
The role of artificial intelligence in 
wound care: applications, evidence and 
future directions

Artificial Intelligence (AI) represents 
a fundamental shift in computing, 
moving from systems that follow fixed 

instructions to those that improve performance 
by processing data, identifying patterns, and 
adjusting outputs accordingly. At its most basic 
level, AI attempts to replicate aspects of human 
intelligence through computational methods, 
including pattern recognition, learning from 
experience, and making decisions under 
uncertainty (Russell and Norvig, 2020).

The concept of AI dates back to the mid-
20th century, when early pioneers such as Alan 
Turing and John McCarthy laid the theoretical 
foundations for machines capable of 
simulating human-like intelligence (Russell and 
Norvig, 2020). Over the decades, AI has evolved 
from symbolic logic-based approaches to 
data-driven machine learning methods, 
driven by advancements in computing power, 
algorithmic efficiency, and the availability 
of large datasets. Initially confined to rule-
based expert systems, AI has progressed 
to sophisticated neural networks that can 
autonomously learn from vast amounts of 
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Artificial intelligence (AI) has the potential to transform wound care by addressing 
inconsistencies in assessment, clinical inefficiencies, and alleviating resource 
constraints in a speciality that imposes significant economic burden on healthcare 
systems. This article explores AI’s applications, evidence and future directions in 
wound management. It reviews core AI methodologies – machine learning, deep 
learning, and natural language processing – and how they are driving innovations 
including computer vision for wound imaging, predictive analytics for healing 
trajectories, and smart dressings for real-time monitoring. These technologies 
can enhance diagnostic accuracy, standardise assessments, and enable early 
detection of complications, supporting personalised treatment strategies. With this 
prospective step change in our approach to wound care, challenges persist, including 
infrastructure needs, data privacy concerns, bias in AI imaging with different skin 
tones, workforce training requirements, and financial investment barriers. Successful 
integration requires alignment with clinical workflows, adherence to ethical 
standards, and unwavering focus on patient safety. It is crucial that AI is designed 
and seen to augment rather than replace clinical expertise, highlighting the need for 
ethical governance and ongoing evaluation. By balancing technological innovation 
with clinical excellence, AI can enhance patient outcomes, optimise resource 
allocation, and maintain high standards in wound care. Realising AI’s full potential will 
depend on collaboration among clinicians, researchers, and policymakers to build 
resilient, patient-centred healthcare systems.
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information. Today, AI underpins a wide range 
of applications, from medical diagnostics and 
predictive analytics to autonomous systems 
and natural language processing.

To understand AI, it is essential to be familiar 
with several key concepts, outline below.

 
Machine learning
Machine learning (ML), a core component of 
modern AI, enables systems to improve their 
performance through exposure to data rather 
than explicit programming (Russell and Norvig, 
2020). This mirrors how humans learn from 
experience, though through mathematical 
rather than biological processes. 

In wound care, machine learning has 
demonstrated significant clinical utility through 
integrative analytical approaches. Tabja Bortesi 
et al. (2024) conducted a scoping review of 
machine learning approaches for surgical 
wound infection identification, examining 10 
studies that developed diagnostic models 
using wound images. Their analysis revealed 
that machine learning systems achieved high 
diagnostic accuracy in detecting surgical site 
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infections from standard digital photographs. 
These systems effectively processed wound 
characteristics that might be overlooked 
in routine assessment, with some models 
demonstrating performance comparable to 
specialist clinicians. The researchers noted 
that while early implementations showed 
promise, standardisation in image capture and 
validation methodologies would be crucial for 
clinical translation.

Machine learning encompasses several 
approaches, each serving different purposes in 
wound care analysis.

Supervised learning
Supervised learning involves training systems 
using labelled examples. Much like a student 
learning from worked problems, the system 
analyses known cases to develop rules it can 
apply to new situations. For example, systems 
can learn how to interpret an abnormality e.g. 
a fracture on an X-ray by repeatedly looking at 
X-rays where the abnormality has previously 
been diagnosed by a human (Sharma, 2023). 

In wound care, supervised learning has 
achieved notable success in standardising 
wound assessment protocols. Convolutional 
neural networks trained on 199 clinician-
annotated wound photographs achieved 
comparable performance to human experts in 
delineating wound boundaries and quantifying 
granulation tissue percentages. The supervised 
learning approach showed statistically similar 
error distributions between AI-human and 
human-human comparisons for false-positive 
and absolute relative error, with only marginally 
elevated false-negative area in AI tracings 
(Howell et al, 2021).

This methodology – involving 110 
photographs from one clinical centre and 89 
from another – revealed that AI-derived wound 
area measurements fell within the range of 
inter-clinician variability observed between 
four independent wound specialists. Masked 
physician reviewers qualitatively rated AI 
tracings as equivalent to human annotations 
in 60.4% of cases, demonstrating supervised 
learning’s capacity to replicate expert-level 
wound boundary identification despite inherent 
subjectivity in clinical assessments.

Beyond imaging, supervised learning 
enhances predictive analytics for chronic 
wound management. Gradient-boosted 
decision tree models trained on 1.2 million 
electronic health records demonstrated 
robust prognostic capability, predicting 12-
week healing outcomes (Berezo et al, 2022). 
These models analysed longitudinal wound 
progression metrics, including surface area 
reduction rates, tissue depth measurements, 

and comorbidity profiles, to stratify patients 
by healing likelihood. By identifying high-
risk trajectories through features such as 
prolonged treatment duration and larger initial 
wound size, these systems enable clinicians 
to prioritise interventions earlier in the care 
pathway, optimising resource allocation for 
complex cases (Berezo et al, 2022).

Unsupervised learning
Unsupervised learning enables systems to 
autonomously identify patterns within data 
without explicit guidance, mirroring how 
humans intuitively group objects based on 
shared characteristics. These systems discern 
commonalities and distinctions independently, 
often uncovering unexpected patterns in 
complex datasets.

In electron microscopy image analysis, 
researchers have leveraged unsupervised 
learning to uncover latent features, facilitating 
the exploration of large-scale datasets without 
prior annotations. For example, deep learning-
based unsupervised clustering methods have 
differentiated cellular structures in electron 
microscopy images, revealing biologically 
meaningful distinctions among these structures 
(Huang et al, 2020). 

Similarly, in oncology research, 
unsupervised classification techniques 
have been applied to tumour cell nuclei 
based on morphological and structural 
similarities, thereby enabling more precise 
stratification of cancer subtypes and assisting 
in personalised treatment planning (Yuan 
and Suh, 2018). In wound care, unsupervised 
learning techniques have been integrated with 
hyperspectral imaging (HSI) data to classify 
wound areas, distinguishing affected tissue 
from surrounding healthy skin. Recent research 
has demonstrated the use of k-means 
clustering for automated wound segmentation, 
enhancing measurement accuracy, reducing 
human error, and improving consistency in 
wound assessment (Lee and Chen, 2023).

Deep learning
Deep learning represents a sophisticated 
computational approach inspired by the 
layered structure of biological neural networks. 
By employing multi-tiered artificial neural 
architectures, these systems autonomously 
derive hierarchical data representations 
through successive abstraction layers. Initial 
processing stages detect elementary visual 
components such as edges and textures, while 
subsequent layers integrate these features 
into increasingly complex patterns reflective of 
anatomical structures.

An AI system trained on 76,000 UK and 
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15,000 US mammograms significantly improved 
breast cancer screening accuracy, reducing 
false-positive recalls by 5.7% in the US and 
1.2% in the UK, and lowering false-negative 
rates by 9.4% (US) and 2.7% (UK) when tested 
on 25,856 UK and 3,097 US cases (McKinney 
et al, 2020). The system outperformed six 
radiologists in an independent study. By 
analysing mammographic features, it 
detected malignancies more consistently 
than human experts and demonstrated 
robust generalisability across international 
datasets. In simulations of the UK’s double-
reading workflow, the AI reduced second-
reader workload by 88% while maintaining 
diagnostic accuracy, highlighting its potential 
to enhance efficiency in high-volume 
screening programmes.

Spectral AI’s DeepView® employs 
multispectral imaging (MSI) across eight 
spectral bands and a voting ensemble of 
deep convolutional networks (U-Net, SegNet, 
and a dilated fully convolutional network) 
to identify non-healing (deep) burn regions 
(Thatcher et al, 2023). A pilot study gathered 
406 MSI images from 58 separate burns, using 
21-day healing outcomes or biopsy findings 
as ground-truth references. This ensemble 
achieved approximately 81% sensitivity, 100% 
specificity, and 97% positive predictive value 
(PPV) for detecting deep partial- and full-
thickness burns, with performance markedly 
improving after 2–3 days post-injury. 
These results suggest that DeepView® can 
feasibly support earlier and more reliable 
burn-depth assessments, particularly for 
indeterminate wounds.

Natural language processing
Natural language processing (NLP) represents 
another crucial AI capability, enabling systems 
to understand and process human language. 
This technology underlies everything from 
clinical documentation analysis to automated 
translation services. It involves teaching 
computers to understand not just individual 
words, but context, meaning, and the subtle 
nuances of human communication.

In cardiovascular diagnostics, NLP has 
proven particularly valuable for standardising 
echocardiography report analysis. A 2024 study 
validated an NLP algorithm on 200 annotated 
transthoracic echocardiogram (TTE) reports, 
achieving high precision scores of 0.93-
1.00 for detecting aortic stenosis and mitral 
regurgitation severity (Xie et al, 2024). The 
algorithm demonstrated robust performance in 
classifying valvular pathologies. While the initial 
validation sample was limited, the algorithm 
was subsequently applied to 1,225,270 historical 

TTE reports within the Kaiser Permanente 
Southern California health system, successfully 
standardising valve disease documentation 
across diverse clinical narratives. This approach 
addressed critical gaps in structured EHR data 
by capturing nuanced severity descriptors like 
“moderate-severe aortic stenosis” that often go 
uncoded in traditional systems. 

A study examined a hybrid AI-driven 
approach for wound assessment, which 
integrates a VGG16 convolutional neural 
network for wound image classification 
- achieving 95% accuracy across seven 
categories - with GPT-3.5-powered natural 
language processing for generating treatment 
recommendations (Keseraju 2024). The 
system processes user-input text descriptors 
(e.g., “burn from boiling water”) alongside 
wound images, providing basic care 
recommendations aligned with the predicted 
wound type. For example, categorising a wound 
as a “burn” triggers general cooling protocol 
advice, while “laceration” prompts guidance on 
bleeding control.

The study highlighted that 60% of patients 
in rural areas face care delays due to travel 
barriers (average 40-mile distance to 
specialists), with diagnostic delays contributing 
to complications in 30% of cases. While 
GPT-3.5 offers broad recommendations, the 
paper notes limitations in medical specificity, 
advising users to “seek professional care 
for severe wounds” rather than providing 
granular therapeutic protocols. This integration 
demonstrates NLP’s role in contextualising 
image-based diagnoses with patient-reported 
symptoms, particularly valuable in resource-
limited settings.

Building on these core AI principles, this 
review will explore their adaptation in wound 
care - transforming documentation, predictive 
analytics, and personalised treatment 
strategies to address some of the critical 
challenges in modern wound management.

The current context of wound care
The delivery of wound care faces significant 
challenges within modern healthcare 
systems. An ageing population with increasing 
comorbidities contributes to growing patient 
complexity, while healthcare services struggle 
with resource constraints and workforce 
shortages. Chronic wounds cost the National 
Health Service (NHS) in England £5.6 billion 
($7.39 billion) annually for unhealed wounds, 
with total wound care expenditure reaching 
£8.3 billion ($10.96 billion) in 2017/18, a figure 
projected to rise with increasing demographic 
pressures (Guest et al, 2020). The economic 
burden of chronic wounds extends beyond the 
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UK. In the US, chronic wound care is estimated 
to cost healthcare systems over $28 billion 
annually, with diabetic foot ulcers alone 
contributing to approximately $9 billion in 
expenditures (Sen, 2019). Similarly, European 
healthcare systems report increasing financial 
strain due to rising wound care demands, 
highlighting the universal nature of these 
challenges.

Current clinical challenges
Several critical challenges characterise modern 
wound care delivery:
•	 Workforce limitations: Healthcare 

systems face critical shortages of wound 
care specialists, exacerbating reliance 
on general practitioners for complex 
wound management (Barakat-Johnson 
et al, 2022). Studies highlight critical 
knowledge gaps in wound assessment 
and management among non-specialists 
(Mohammed et al, 2022).

•	 Wound assessment variability: Traditional 
ruler-based methods overestimate wound 
area by 44% and exhibit significant inter-
clinician variability, impacting treatment 
decisions, care continuity, and patient 
outcomes (Wang et al, 2017).

•	 Documentation constraints: High 
documentation workload places significant 
time pressures on clinical teams, impacting 
efficiency and limiting time available for 
direct patient care. Traditional manual 
methods require multiple steps, increasing 
the administrative burden on clinicians 
(Mohammed et al, 2022).

•	 Resource allocation: Healthcare providers 
face increasing patient loads and workforce 
shortages, requiring efficient resource 
allocation to maintain high standards of 
wound care (Barakat-Johnson et al, 2022).

Impact on clinical practice
The challenges outlined in modern wound care 
delivery have direct consequences on quality 
of care, service delivery, and clinical outcomes, 
affecting both clinicians and patients:
•	 Quality of care: Time-consuming manual 

wound assessments strain clinical 
efficiency, limiting the time available for 
direct patient care. For example, evaluating 
115 wounds manually requires 5 hours 31 
minutes, creating significant administrative 
and clinical burden and reducing the 
capacity for patient interaction. This 
inefficiency delays assessment prevents 
national and local targets from being met 
and disrupts continuity of care (Mohammed 
et al, 2022).

•	 Service delivery: Traditional wound 

assessment methods remain time-intensive 
and reliant on manual measurements, 
restricting the number of patients clinicians 
can effectively evaluate. 
High patient loads combined with workforce 
shortages exacerbate delays in wound 
assessment, particularly in settings where 
non-specialists are required to manage 
complex wounds. The lack of standardised 
and objective assessment tools further 
contributes to inconsistencies in treatment 
planning.

•	 Clinical outcomes: Timely wound 
reassessment is crucial for preventing 
complications and ensuring effective 
treatment. However, delays in evaluation 
reduce opportunities for early intervention, 
increasing the risk of infection and 
hospitalisation. Workforce shortages further 
strain clinical capacity, limiting access to 
specialist care and making timely treatment 
in complex cases more challenging, 
ultimately leading to preventable 
complications (Barakat-Johnson et al, 
2022).

Systemic healthcare pressures
Modern wound care is shaped not only 
by clinical challenges but also by broader 
systemic pressures that impact healthcare 
sustainability, workforce readiness, and 
administrative demands.
•	 Economic burden: The rising costs of 

chronic wound care pose a growing 
challenge to healthcare sustainability, 
requiring optimised resource allocation 
to meet increasing demand. Healthcare 
expenditure on wound management has 
surged in recent years, with a substantial 
proportion of costs driven by prolonged 
healing times and high dependency on 
community-based services. The financial 
strain on healthcare systems underscores 
the urgency of improving efficiency in care 
delivery and reducing the economic impact 
of chronic wounds (Guest et al, 2020).

•	 Workforce development: Advances in 
wound care protocols demand ongoing 
education and upskilling of healthcare 
professionals, placing additional strain 
on already limited training resources. 
As wound management becomes 
increasingly complex, the need grows for 
specialised knowledge in areas such as 
advanced dressings, infection control and 
technology-assisted assessment. However, 
healthcare providers often face constraints 
in accessing dedicated wound care 
education, leading to variability in clinical 
practice and potential disparities in patient 

Wounds International 2025  |  Volume: 16 Issue: 3 33Wounds International 2025  |  Volume: 16 Issue: 2



outcomes (Barakat-Johnson et al, 2022).
•	 Documentation requirements: Increasing 

regulatory demands for evidence-
based practice and clinical audits place 
a growing administrative burden on 
healthcare professionals. Documentation 
now extends beyond routine wound 
assessment to include detailed risk 
stratifications, treatment justifications, and 
multidisciplinary care coordination records. 
These expanding requirements contribute to 
clinician workload, reducing time available 
for direct patient care. Additionally, 
disparities in documentation practices 
across healthcare settings can lead to 
inconsistencies in wound management, 
further complicating efforts to standardise 
and improve patient outcomes.

Need for innovation
These mounting challenges highlight the urgent 
need for innovative approaches to wound care 
delivery. Traditional methods of assessment, 
documentation, and monitoring struggle to 
meet current healthcare demands. The sector 
requires solutions that can enhance diagnostic 
precision, automate documentation processes 
and optimise resource allocation. Artificial 
intelligence presents a promising avenue 
to address these systemic issues through 
standardisation of assessment procedures, 
improvement in measurement accuracy, 
and support for clinical decision-making 
(Mohammed et al, 2022).

AI applications and impact in wound care
The translation of AI capabilities into clinical 
wound care practice represents a significant 
advancement in healthcare delivery. While 
the fundamental technologies of machine 
learning, deep learning, and natural language 
processing provide the technical foundation, 
their practical implementation has emerged as 
a direct response to the pressing challenges in 
modern wound care. These implementations 
address critical needs in assessment 
standardisation, resource optimisation, and 
clinical decision support, transforming how 
healthcare providers deliver and monitor 
wound care across various clinical settings.

Clinical assessment and diagnostic 
applications
AI has transformed clinical assessment in 
wound care through multiple complementary 
applications. These implementations build 
upon proven healthcare technologies to 
address specific clinical needs in measurement 
accuracy, tissue classification, and healing 
trajectory prediction. For instance, AI systems 

classify chronic wounds (diabetic, pressure 
injury, lymphovascular, surgical) with 83% 
precision, using explainable heatmaps to 
highlight decision-critical tissue features. For 
diabetic wounds, the system achieves 72% 
precision, effectively supporting automated 
assessment and classification (Sarp et al, 2021).

The integration of AI-enhanced wound 
monitoring technologies into clinical 
workflows has improved the ability to detect 
subtle changes in wound healing. Smart 
dressings with integrated pH and temperature 
sensors enable early infection detection 
by identifying shifts in wound acidity and 
inflammatory temperature changes. These 
systems correlate increased temperature with 
bacterial proliferation and monitor acidosis 
trends indicative of infection progression (Su 
et al, 2024). 

Hyperspectral imaging technologies have 
significantly advanced wound classification by 
distinguishing between healthy and wounded 
tissue based on spectral characteristics. This 
imaging modality, when integrated with 3D 
convolutional neural networks, has achieved 
high accuracy in identifying wound severity, 
independent of skin colour, making it a valuable 
tool for clinical assessment (Cihan and 
Ceylan, 2023).

Implementation of AI systems in clinical 
practice
The practical implementation of AI in 
wound care has demonstrated measurable 
improvements in clinical efficiency and 
accuracy. Mobile applications utilising 
deep learning algorithms have significantly 
enhanced wound measurement, reducing 
assessment time by 54% while improving first-
attempt imaging accuracy to 92.2%. AI-driven 
platforms streamline workflows, enabling faster 
and more consistent wound documentation 
compared to manual methods (Mohammed et 
al, 2022). 

Multispectral imaging combined with deep 
learning improved intraoperative decision-
making in burn excision surgery. The AI system 
achieved 87% accuracy in distinguishing 
viable from non-viable burn tissue, enhancing 
surgeon precision and reducing unnecessary 
excision. When using AI guidance, surgeons 
improved their specificity in stopping excision 
from 42% to 67%, demonstrating its potential to 
optimise tissue preservation and debridement 
accuracy (Yu et al, 2023).

Smart dressing technologies integrate 
biosensing capabilities with real-time wound 
monitoring, enhancing diagnostic precision. 
pH-sensitive hydrogels utilising polyaniline 
polymers detect acidosis, indicating bacterial 
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proliferation, while near-infrared spectroscopy 
(NIRS) serves as a non-invasive tool for 
measuring tissue oxygenation levels, facilitating 
early detection of wound complications [19].

Advanced applications and care delivery 
systems
The integration of AI technologies into wound 
care has catalysed significant advancements 
in service delivery, enabling healthcare 
providers to extend specialist expertise beyond 
traditional clinical settings whilst improving 
care standardisation and resource utilisation. 
These developments demonstrate how AI 
applications can transform multiple aspects of 
wound care delivery, from remote monitoring to 
clinical decision support.

Remote monitoring and telehealth solutions
Remote monitoring platforms integrating 
augmented reality (AR) and contactless wound 
measurement have enhanced community-
based wound care delivery. These systems 
provide accurate assessments of wound 
morphology, improving clinician-patient 
communication and enabling more consistent 
monitoring outside traditional clinical settings. 
Early studies suggest these technologies may 
reduce the need for frequent in-person visits, 
facilitating remote tracking of wound healing 
progression (Mamone et al, 2022). Integration 
with existing telehealth infrastructure has 
facilitated real-time specialist guidance 
for complex dressing changes and early 
intervention protocols, particularly valuable 
in resource-limited settings where specialist 
access presents significant challenges. 

Clinical decision support systems
AI-enhanced decision support systems are 
increasingly integrated into wound care 
to improve treatment planning and risk 
assessment. Predictive analytics leveraging 
patient comorbidities, wound characteristics, 
and historical treatment data have 
demonstrated strong potential in identifying 
hospital-acquired pressure injury (HAPI) risks 
before they become clinically apparent. 

A comprehensive review by Toffaha 
et al. (2023) identified 39 relevant studies 
implementing AI and decision support systems 
for pressure injury prediction, with models 
achieving accuracy rates between 75% and 
93% in identifying high-risk patients. Their 
analysis revealed that machine learning 
algorithms using electronic health records 
could detect potential pressure injuries up 
to 48–72 hours before clinical manifestation, 
substantially expanding the intervention 
window for preventive care. These AI models 

frequently outperformed traditional risk 
assessment tools by incorporating more 
diverse data sources, including patient mobility 
patterns, nutrition status, and environmental 
factors that traditional scales often overlook. 

While most implementations remain in 
developmental or retrospective phases, with 
limited real-world clinical deployment, the 
evidence suggests that AI-powered decision 
support tools could significantly enhance 
standardised care delivery and risk mitigation 
in wound management (Toffaha et al, 2023). 
To complement these decision-making tools, 
AI also offers promising solutions to improve 
the tracking and documentation of wound 
care quality.

Quality assurance and documentation
Quality assurance applications have emerged 
as crucial tools for maintaining care standards 
across healthcare settings. Advanced AI-driven 
systems analysing wound photography and 
clinical notes have demonstrated significant 
improvements in documentation completeness 
and adherence to clinical protocols. Studies 
evaluating AI-powered wound assessment 
tools indicate that these platforms enhance 
record accuracy, reduce variability in wound 
documentation, and support comprehensive 
clinical governance by automating care 
protocol tracking and identifying assessment 
gaps. This enables proactive quality 
improvement initiatives whilst reducing 
the administrative burden on clinical staff 
(Barakat-Johnson et al, 2022).

Workforce impact and workflow 
transformation
The integration of AI technologies into clinical 
workflows has contributed to significant 
transformations in workforce efficiency and 
task delegation. AI-powered decision-support 
systems, such as deep learning models 
trained for pressure ulcer classification, have 
demonstrated the ability to enhance diagnostic 
precision and reduce variability in assessments. 

A Faster R-CNN model was implemented 
and evaluated in clinical trials to assist 
healthcare professionals in categorising 
multiple stages of pressure ulcers, with the 
aim of supporting standardised reporting 
and minimising inconsistencies in wound 
documentation (Katz and Gefen, 2025).

These advances enable clinicians to make 
more informed treatment decisions, reducing 
the burden of subjective assessment. While 
AI applications continue to evolve, their 
integration into triage and wound assessment 
workflows suggests promising opportunities for 
optimising specialist expertise allocation. Future 
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Table 1. AI technologies in wound care: Capabilities, benefits, and implementation challenges.

AI technology Description Key capabilities Benefits Implementation 
challenges

Computer 
vision analysis

AI-powered imaging 
systems using deep 
learning algorithms 
to assess wound 
dimensions and tissue 
characteristics.

Reduces inter-observer 
variability, ensures 
consistent assessments, 
accurately measures 
wound dimensions, 
and identifies tissue 
characteristics with high 
precision.

Improves diagnostic 
accuracy, predicts 
healing trajectories, 
assists in treatment 
planning, and supports 
objective assessment of 
wound progression.

Infrastructure 
requirements, variability 
in wound images, skin 
tone bias affecting 
accuracy, need for 
diverse training 
datasets, and rigorous 
validation protocols.

Smart 
dressings and 
biosensors

Integrated sensors 
within wound dressings 
that monitor pH, 
temperature, and other 
biomarkers.

Detects changes in 
wound biochemistry, 
identifies early signs of 
infection through shifts in 
acidity and temperature, 
and monitors healing 
environment continuously.

Enables early detection 
of infection, reduces 
unnecessary dressing 
changes, and supports 
timely intervention for 
complications.

Cost barriers, materials 
integration challenges, 
data transmission 
issues, and clinical 
workflow integration.

Multispectral/
hyperspectral 
imaging

Advanced imaging 
technologies that 
capture data across 
multiple spectral 
bands to assess wound 
characteristics.

Distinguishes between 
healthy and wounded 
tissue based on spectral 
characteristics, identifies 
viable vs non-viable tissue, 
and functions independent 
of skin colour.

Enhances intraoperative 
decision-making in burn 
excision, improves tissue 
classification accuracy, 
and provides objective 
assessment of wound 
severity.

Specialised equipment 
costs, technical 
expertise requirements, 
and integration with 
existing imaging 
workflows.

Natural 
language 
processing

AI systems that 
understand and process 
wound documentation 
and clinical notes.

Automates extraction 
of key information from 
clinical narratives, 
standardises 
documentation, and 
generates structured 
wound assessments.

Reduces documentation 
time, improves 
consistency in reporting, 
and enhances 
communication 
between care providers.

Training requirements 
for diverse clinical 
vocabularies, integration 
with EHR systems, and 
maintenance of medical 
accuracy.

Decision-
support 
systems

AI platforms analysing 
wound data to 
provide evidence-
based treatment 
recommendations.

Identifies hospital-
acquired pressure injury 
risks, guides treatment 
selection, and supports 
standardised care 
protocols.

Enhances treatment 
decisions, supports less 
experienced clinicians, 
and improves risk 
assessment accuracy.

Clinical workflow 
integration, clinician 
acceptance challenges, 
and need for regular 
updates with evolving 
evidence.

Remote 
monitoring and 
telehealth

AI-enhanced platforms 
enabling assessment 
and specialist 
consultation outside 
traditional clinical 
settings.

Facilitates accurate 
remote wound 
assessment using 
augmented reality 
and contactless 
measurement 
technologies.

Extends specialist 
expertise to remote 
settings, reduces 
unnecessary clinic visits, 
and improves access to 
care.

Connectivity 
requirements, image 
quality variability, and 
patient technology 
access issues.

Predictive 
analytics

AI models analysing 
patient histories and 
wound characteristics to 
anticipate complications 
and healing trajectories.

Identifies high-risk 
patients, detects early 
warning signs, and 
predicts treatment 
responses based on 
multiple data streams.

Enables proactive 
intervention, improves 
resource allocation, and 
supports personalised 
treatment planning.

Data quality 
dependencies, model 
transparency issues, 
and need for continuous 
validation and 
refinement.

Quality 
assurance 
systems

AI tools for monitoring 
wound care protocol 
adherence and 
documentation 
completeness.

Supports best practice 
adherence through 
automated auditing and 
performance tracking.

Ensures consistent 
care quality, identifies 
improvement 
opportunities, and 
enhances clinical 
governance.

Implementation 
complexity, integration 
with existing quality 
frameworks, and 
change management 
requirements.
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research will be crucial in further evaluating 
AI’s direct impact on staff confidence, training 
outcomes, and workforce satisfaction (Fergus 
et al, 2022).

Table 1 summarises the key AI technologies 
used in wound care, outlining their capabilities, 
benefits, and implementation challenges.

Challenges and limitations of AI in wound care
Despite AI’s transformative potential in 
wound care, its successful implementation 
is contingent upon overcoming significant 
challenges related to bias, costs, regulatory 
frameworks, interoperability, and workforce 
integration. Addressing these barriers is critical 
to ensuring safe, effective, and equitable AI 
adoption in clinical practice.

Bias in AI imaging and skin tone challenges
AI-powered wound imaging tools may 
exhibit bias in diagnostic accuracy across 
different skin tones, particularly for patients 
with darker skin. This issue arises from the 
underrepresentation of diverse skin tones 
in AI training datasets, leading to higher 
misclassification rates and potential delays in 
diagnosis.

The Fitzpatrick scale, widely used in AI model 
development, has some minor limitations 
in representing global skin diversity, as it 
was originally designed for UV sensitivity 
classification in light-skinned individuals 
(Fitzpatrick, 1988). As AI use increases, a 
potential switch to a more inclusive skin tone 
scales, such as the Monk Skin Tone scale 
[Figure 1] – a 10-shade gradient developed 
to better capture global skin diversity – offer 
enhanced classification of skin tones and 
undertones, improving AI fairness in wound 
assessment contexts (Monk, 2022; Montoya  et 
al, 2024; Google AI, 2025).

Recent evidence underscores the 
importance of recognising skin tone as a 
crucial factor in wound care. A study by Katz 
and Gefen (2025) demonstrated that skin 
tolerance to shear forces varies considerably 
across different skin tones, with darker skin 

exhibiting lower water content and higher 
transepidermal water loss, leading to increased 
pressure injury risk. These biomechanical 
differences highlight the need for AI-driven 
wound assessment systems to incorporate 
diverse patient datasets to improve diagnostic 
precision and equity in wound care.

Current research indicates several essential 
approaches to mitigate bias in AI-driven wound 
imaging. These include expanding training 
datasets to include a wider spectrum of skin 
tones (Groh et al, 2021; Groh, 2021), developing 
AI models that adjust for skin reflectance 
variations using multispectral imaging (Lee 
and Chen, 2023), and utilising alternative 
classification scales beyond the Fitzpatrick 
scale (Monk, 2022; Montoya  et al, 2024).

Economic barriers to implementation
Although AI-powered wound care solutions 
offer long-term benefits, high initial costs 
remain a significant barrier to adoption. AI-
integrated smart dressings require advanced 
biosensing technology and specialised 
materials, making them more expensive than 
conventional dressings. 

Additionally, AI-powered imaging systems 
necessitate specialised hardware, such as 
hyperspectral cameras, which can be costly for 
resource-limited healthcare settings. 

Implementation expenses, including staff 
training and software integration, further 
delay widespread adoption. Research efforts 
must focus on developing cost-effectiveness 
studies to justify AI adoption in wound care 
pathways, creating scalable, low-cost AI 
solutions tailored for community healthcare 
settings, and establishing financial incentives or 
reimbursement models for AI-integrated care  
(Su et al, 2024).

Regulatory considerations and validation 
challenges
In addition to financial constraints, AI tools 
in wound care must also navigate complex 
validation and regulatory approval processes 
to ensure safety, accuracy and clinical efficacy. 

Figure 1 

Figure 1. The Monk 
Skin Tone (MST) scale 
showing ten gradations 
of skin tones (A-J) from 
lightest to darkest with 
corresponding hex 
colour codes. The MST 
Scale was developed to 
provide more inclusive 
representation of human 
skin tone diversity 
compared to previously 
used scales. (Source: 
Monk, 2019).
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International regulatory bodies set strict 
compliance standards:
•	 ISO 13485: Establishes quality management 

systems for medical device development. 
Compliance with ISO 13485 ensures 
that organisations maintain effective 
processes throughout the product lifecycle, 
emphasising risk management and design 
control activities (ISO, 2016).

•	 Food and Drug Administration (FDA, US): 
Requires pre-market approval for AI-
powered imaging systems used in clinical 
practice. The FDA provides guidance 
on regulatory considerations for AI/ML-
based medical devices, emphasising 
transparency, validation and real-world 
performance data to support regulatory 
submissions. 

•	 CE Mark (Europe): Ensures compliance 
with European medical device regulations. 
All medical devices, including those 
incorporating machine learning, must 
comply with the CE marking requirements 
under the relevant EU regulatory frameworks 
to be lawfully marketed within Europe. 

•	 General Data Protection Regulation 
(Europe) and Health Insurance Portability 
and Accountability Act (US): Regulate 
patient data privacy and AI compliance. 

Ensuring compliance with these standards 
is critical for the safe deployment of AI in 
clinical settings. However, the dynamic nature 
of AI models, which continuously learn from 
new data, poses challenges for traditional 
regulatory approval frameworks.

Future regulatory efforts must address 
adaptive AI approval processes to 
accommodate self-learning models, 
harmonisation of AI medical device regulations 
across jurisdictions, and transparent reporting 
requirements for AI-based clinical decision-
support tools.

Interoperability and technical integration
For AI to be effective in wound care, it must 
seamlessly integrate with existing electronic 
health records (EHRs) and hospital workflows. 
Interoperability remains a major challenge due 
to inconsistent data formats that hinder AI–EHR 
communication, variability in AI model outputs 
making standardisation difficult, and security 
concerns as AI-driven wound assessment tools 
must adhere to data-sharing regulations.

Healthcare organisations must focus 
on developing standardised AI frameworks 
that can interface with multiple EHR systems, 
ensuring secure AI-EHR integration to protect 
patient data privacy and facilitating clinician 
adoption through intuitive AI interfaces within 

EHR platforms (Mohammed et al, 2022).

Infrastructure and model optimisation 
requirements
Successful AI deployment in wound care 
settings depends on robust infrastructure 
to support image capture, data processing, 
and clinical integration. Clinical areas must 
be equipped with adequate lighting, space 
for image capture, and reliable network 
connectivity for AI-driven wound assessment 
(Barakat-Johnson et al, 2022). Technical 
architecture must seamlessly integrate with 
existing EHRs and hospital IT frameworks to 
ensure smooth data interoperability.

Beyond physical and technical 
infrastructure considerations, implementing 
smart dressing technologies presents practical 
challenges. Material incompatibilities between 
flexible electronics and biological tissues can 
lead to degradation in electrical performance 
and adhesion over time. To ensure stable 
conductivity and sensor functionality, 
advanced materials such as liquid metal 
interconnects and gold-based electrodes 
have been developed, improving stretchability 
and long-term adhesion in dynamic wound 
environments. These optimisations are 
essential for maintaining reliable wound 
monitoring and infection control, particularly 
in cases where wounds are subject to frequent 
mechanical strain (Su et al, 2024).

Workforce adaptation and training 
considerations
AI adoption in wound care requires clinicians to 
be equipped with the necessary digital literacy 
to interpret AI-generated recommendations 
(Car et al, 2025). Many healthcare professionals 
lack AI-specific training, particularly in 
decision-support tools, express concerns about 
AI replacing clinical judgement, and struggle 
with integrating AI outputs into routine patient 
care workflows (Heerschap, 2023; Sivaraman et 
al, 2023).

To ensure effective AI adoption, workforce 
development strategies should incorporate 
comprehensive clinician training programmes 
focused on AI literacy, transparent AI decision-
support systems to improve trust, and clear 
guidelines on AI-human collaboration, 
reinforcing AI as an augmentative tool rather 
than a replacement (Heerschap, 2023; 
Sivaraman et al, 2023; Car et al, 2025).

Future developments and strategic 
recommendations
The evolution of AI in wound care continues to 
advance, shaped by both current challenges 
and emerging technological capabilities. 
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Looking ahead, many of the current limitations 
can be overcome by next-generation AI 
developments and strategic implementation. 
The next phase of development will be defined 
by enhanced predictive models, seamless 
clinical integration and automated data-driven 
decision-making. These advances hold the 
potential to revolutionise wound management 
by enabling earlier interventions, reducing 
hospitalisation rates, and improving patient 
outcomes.

Advanced clinical applications
Predictive analytics enhancement
Next-generation AI systems offer enhanced 
predictive capabilities for wound healing 
trajectories. These systems analyse multiple 
data streams—such as tissue characteristics, 
patient factors, and treatment responses—to 
support more proactive intervention. Emerging 
AI-powered wound prediction models leverage 
deep learning to detect early signs of infection, 
tissue deterioration, and delayed healing. These 
systems analyse historical wound data and 
real-time physiological markers to provide 
proactive treatment recommendations. In 
diabetic foot ulcer management, for example, 
predictive AI has been used to identify patients 
at high risk of amputation, allowing clinicians 
to intervene sooner and improve limb salvage 
outcomes. Research indicates that early 
identification of healing complications could 
significantly reduce hospital admissions and 
improve patient outcomes(Guest et al, 2020).

Integration of clinical data
Future systems will increasingly combine 
information from various sources to enhance 
personalised wound care. The integration 
of EHRs, wound imaging tools, and social 
determinants of health data is expected to 
refine predictive analytics, optimise treatment 
pathways, and improve patient outcomes. 
Platforms like DHIS2 have demonstrated the 
potential to aggregate clinical, demographic, 
and geographic data, supporting data-driven 
decision-making in wound care (Paddo et al, 
2024).

Pattern recognition advances
Advanced machine learning algorithms are 
increasingly capable of identifying subtle 
changes in wound characteristics over time. 
These systems learn from clinical outcomes, 
continually refining their ability to detect early 
warning signs of complications. Recent deep 
learning models have demonstrated the ability 
to predict wound healing stages by analysing 
collagen fibre patterns in histological images, 
achieving an accuracy of 82% in classifying six 

distinct healing phases  (He et al, 2024). Such 
advancements provide valuable insights into 
wound progression and have the potential to 
enhance AI-driven wound care management.

Documentation automation
Future systems will further reduce 
administrative burden through advanced 
natural language processing (NLP) tools. 
AI-powered documentation platforms have 
demonstrated the ability to generate post-
operative reports with greater accuracy than 
those manually written by surgeons, reducing 
errors and enabling clinical staff to dedicate 
more time to direct patient care (Lapid, 2025). 
Additionally, AI-driven clinical documentation 
tools are being adopted by healthcare systems 
worldwide to automate medical notetaking and 
streamline administrative workflows. Systems 
like Abridge have been integrated into more 
than 100 hospitals across the US, including 
rural and paediatric care settings, highlighting 
the growing role of NLP in reducing clinician 
workload (Reuters, 2025).

Strategic implementation recommendations
The successful integration of AI technologies 
in wound care requires careful consideration 
of implementation strategies. Healthcare 
organisations must develop clear objectives 
and implementation plans that align with 
clinical needs and service delivery goals 
(Barakat-Johnson et al, 2022).

Essential elements for successful 
implementation include:
•	 Comprehensive staff training programmes 

that build both confidence and competence
•	 Clear protocols for AI integration into 

existing clinical workflows
•	 Robust validation processes for AI-driven 

decision support
•	 Regular evaluation of clinical outcomes and 

system performance
•	 Mechanisms for ongoing feedback and 

system refinement

Staff development remains crucial to the 
successful integration of AI, and organisations 
must invest in comprehensive training 
programmes that enhance both confidence 
and competence (Ma et al, 2024).

Research priorities
Several key areas require further investigation 
to advance AI implementation in wound care

Clinical outcomes research
Long-term studies examining the impact of AI 
implementation on clinical outcomes remain 
essential. Research must address:
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•	 Comparative effectiveness of AI-
augmented versus traditional care: 
Assessing whether AI-enhanced wound 
care leads to superior clinical outcomes 
compared to standard care models.

•	 Impact on healing rates and complications: 
Investigating how AI-driven wound 
assessment tools influence healing 
time, infection rates, and overall wound 
progression.

•	 Clinical safety and risk assessment: 
Evaluating potential risks associated with 
AI-guided interventions, ensuring patient 
safety and adherence to clinical guidelines.

•	 Integration with existing care pathways: 
Understanding how AI can seamlessly 
integrate into multidisciplinary wound 
care teams and EHR systems for optimal 
workflow efficiency.

Emerging evidence underscores the 
importance of these investigations in shaping 
AI deployment in wound care. Recent research 
demonstrates that deep learning models 
can accurately predict wound healing 
trajectories based on image analysis and 
clinical parameters, thereby improving early 
intervention strategies  (Schlereth et al, 2022). 
Furthermore, AI-driven risk stratification 
models have shown potential in identifying 
patients at higher risk of wound complications, 
enabling proactive management and resource 
allocation (Patel et al, 2023).

Economic impact analysis
Healthcare organisations require robust 
evidence regarding the economic impact of AI 
implementation. This encompasses both direct 
costs and potential savings through improved 
efficiency. Research should examine:
•	 Implementation costs across different 

healthcare settings: Evaluating the initial 
investment required for AI technologies, 
including hardware, software, and training, 
to understand financial barriers and 
scalability in various environments.

•	 Long-term cost savings and return on 
investment: Investigating how AI can 
reduce operational expenses, such as 
decreasing hospital readmissions and 
optimising resource allocation, thereby 
enhancing the financial sustainability of 
healthcare systems.

•	 Healthcare resource utilisation 
optimisation: Assessing AI’s role in 
streamlining workflows, reducing 
clinician workload, and improving patient 
throughput, leading to more efficient use of 
medical resources. (Dennis, 2023).

•	 Sustainability and scalability metrics: 

Determining the long-term viability of 
AI solutions, including their adaptability 
to evolving medical practices and 
their capacity to scale across different 
departments or institutions.

By addressing these areas, healthcare 
organisations can make informed decisions 
about integrating AI technologies, ensuring that 
such innovations lead to both improved patient 
outcomes and economic benefits.

Patient experience investigation
Understanding the patient perspective on 
AI-supported care delivery is increasingly 
important. Ensuring that AI tools align with 
patient needs is essential for acceptance and 
adoption. Research suggests that patient trust 
in AI-driven healthcare solutions depends on 
transparent implementation and clinician 
oversight (Barakat-Johnson et al, 2022). 

Key areas for investigation include:
•	 Patient acceptance and experience with 

AI-augmented care: Assessing how AI 
influences patient comfort and engagement 
in wound care treatment.

•	 Impact on patient-provider 
communication and relationships: 
Examining whether AI-supported 
decision-making enhances or hinders 
communication between patients and 
healthcare providers.

•	 Accessibility and equity considerations: 
Evaluating how AI technologies impact 
different patient demographics and whether 
they introduce unintended disparities 
(Barakat-Johnson et al, 2022).

•	 Patient-reported outcomes and 
satisfaction measures: Investigating how 
AI-assisted wound care affects patient 
satisfaction and clinical engagement.

Realising the transformative potential of AI in 
wound care requires a delicate equilibrium 
between cutting-edge technological 
advancement and pragmatic clinical 
implementation. As these sophisticated 
systems continue to evolve across healthcare 
settings, their sustained success will 
increasingly depend on how thoughtfully 
innovations are integrated into existing care 
pathways and clinical practices. While AI 
applications offer promising solutions to 
longstanding challenges in wound assessment, 
treatment planning, and resource allocation, 
we must recognise that technological 
capability alone cannot guarantee improved 
patient outcomes. 

The full potential of AI-augmented 
wound care can only be realised through 
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methodical strategic implementation that 
considers workflow integration, robust 
validation protocols, and ongoing performance 
evaluation. Furthermore, meaningful clinician 
engagement throughout development and 
deployment phases remains essential, ensuring 
that AI tools genuinely address real-world 
clinical needs rather than creating additional 
administrative burdens. Equally important is 
the establishment of comprehensive ethical 
oversight frameworks that address data 
privacy concerns, mitigate potential biases 
in imaging technologies, and maintain the 
primacy of patient-centred care values. It is 
through this balanced approach - embracing 
innovation while maintaining clinical rigour - 
that AI can truly transform wound care practice.

Conclusions: Shaping the future of AI in wound 
care
Artificial intelligence is revolutionising wound 
care by addressing critical challenges in 
assessment variability, resource allocation, 
and early intervention. With chronic wounds 
creating both significant economic burden 
and clinical challenges across healthcare 
systems, AI-driven solutions are emerging 
as indispensable tools for clinicians. These 
solutions have already demonstrated their 
ability to improve diagnostic accuracy, 
optimise resource allocation, and support less 
experienced healthcare professionals, creating 
a more resilient and responsive healthcare 
system.

The evidence for AI’s transformative 
potential in wound care is compelling. 
Automated assessment systems have 
achieved sub-millimetre precision (mean error: 
0.3 mm) in wound measurement, significantly 
outperforming traditional manual methods 
(Mohammed et al, 2022). 

AI-powered decision support systems have 
enabled nurses to manage complex cases 
with specialist-level accuracy, achieving 
concordance rates of 92% in pressure ulcer 
assessment (Fergus et al, 2024). These 
achievements underscore AI’s capacity to 
enhance clinical practice while addressing 
workforce challenges.

Despite this immense potential, AI’s full 
integration into wound care requires careful 
planning and alignment with clinical priorities. 
The successful adoption of AI must be 
underpinned by key principles:
•	 Augmenting, not replacing, clinical 

expertise: AI must function as a decision-
support tool, reinforcing rather than 
substituting professional judgement. 
The technology should enhance clinical 
decision-making while maintaining the 

essential human elements of wound care 
(Sezgin, 2023).

•	 Ensuring seamless workflow integration: 
AI applications should be incorporated into 
existing clinical pathways with minimal 
disruption, ensuring smooth adaptation for 
clinicians and patients alike. This integration 
must consider the varied settings where 
wound care is delivered, from acute 
hospitals to community care.

•	 Comprehensive training and workforce 
development: Healthcare professionals 
must be adequately trained in the 
interpretation and utilisation of AI outputs 
to enhance confidence in decision-making. 
This includes developing digital literacy 
and understanding AI’s capabilities and 
limitations (Guest et al, 2020).

•	 Regulatory compliance and ethical 
considerations: Robust validation studies 
and adherence to ethical AI governance are 
paramount to ensuring patient safety and 
trust in AI-driven interventions. This includes 
addressing potential biases in AI systems, 
particularly regarding diverse patient 
populations (Montoya et al, 2024)).

•	 Continuous evaluation and iterative 
improvement: AI models should be routinely 
assessed for accuracy, efficiency, and bias 
mitigation, allowing ongoing refinements 
to enhance their clinical utility. This process 
must be data-driven and responsive to 
real-world clinical outcomes.

The path forward requires strong 
interdisciplinary collaboration among clinicians, 
AI researchers, and policymakers to ensure that 
AI-driven wound care solutions remain clinically 
relevant, ethically sound, and seamlessly 
integrated into healthcare systems. This 
collaboration must address current challenges, 
including cost barriers, infrastructure 
requirements, and interoperability issues, 
while maintaining focus on improved patient 
outcomes.

Looking ahead, AI’s role in wound care will 
continue to evolve, driven by advancements 
in predictive analytics, deep learning, and 
wearable health technologies. The future 
promises more sophisticated AI systems 
capable of detecting subtle wound changes, 
predicting healing trajectories, and delivering 
personalised treatment recommendations. 
These systems will increasingly integrate 
multiple data streams, combining clinical 
observations with patient-specific factors to 
optimise care delivery (Mohammed et al, 2022).

Equally important is the human element in 
AI adoption. Engaging healthcare professionals 
throughout the implementation process fosters 
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acceptance and trust, ensuring that AI solutions 
align with real-world clinical needs. Additionally, 
understanding the patient perspective is vital, 
as AI-supported wound care must prioritise 
individualised treatment approaches, improved 
accessibility, and enhanced quality of life. 
This patient-centred approach must consider 
diverse populations and healthcare settings to 
ensure equitable access to AI-enhanced care.

The economic implications of AI adoption 
in wound care are significant. While initial 
implementation costs may be substantial, 
the potential for reduced hospital admissions, 
improved healing outcomes, and optimised 
resource utilisation suggests long-term cost-
effectiveness [19]. Healthcare organisations 
must carefully balance these factors while 
maintaining focus on quality care delivery.

Conclusion
As AI continues to evolve, its success in wound 
care will be defined not just by its ability to 
streamline workflows, but by its capacity to 
enhance patient outcomes, support clinical 
expertise, and uphold the highest standards 
of care. By embracing AI’s potential while 
prioritising ethical implementation and clinician 
engagement, healthcare organisations can 
ensure that AI-driven wound care remains both 
innovative and patient-centred, shaping a 
future where technology and human expertise 
work in harmony to deliver optimal wound care 
outcomes.  
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