Products & technology

The role of artificial intelligence in
wound care: applications, evidence and

future directions

rtificial Intelligence (Al) represents
Ac fundamental shift in computing,

moving from systems that follow fixed
instructions to those that improve performance
by processing data, identifying patterns, and
adjusting outputs accordingly. At its most basic
level, Al attempts to replicate aspects of human
intelligence through computational methods,
including pattern recognition, learning from
experience, and making decisions under
uncertainty (Russell and Norvig, 2020).

The concept of Al dates back to the mid-
20th century, when early pioneers such as Alan
Turing and John McCarthy laid the theoretical
foundations for machines capable of
simulating human-like intelligence (Russell and
Norvig, 2020). Over the decades, Al has evolved
from symbolic logic-based approaches to
data-driven machine learning methods,
driven by advancements in computing power,
algorithmic efficiency, and the availability
of large datasets. Initially confined to rule-
based expert systems, Al has progressed
to sophisticated neural networks that can
autonomously learn from vast amounts of
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information. Today, Al underpins a wide range
of applications, from medical diagnostics and
predictive analytics to autonomous systems
and natural language processing.

To understand Al, it is essential to be familiar
with several key concepts, outline below.

Machine learning

Machine learning (ML), a core component of
modern Al, enables systems to improve their
performance through exposure to data rather
than explicit programming (Russell and Norvig,
2020). This mirrors how humans learn from
experience, though through mathematical
rather than biological processes.

In wound care, machine learning has
demonstrated significant clinical utility through
integrative analytical approaches. Tabja Bortesi
et al. (2024) conducted a scoping review of
machine learning approaches for surgical
wound infection identification, examining 10
studies that developed diagnostic models
using wound images. Their analysis revealed
that machine learning systems achieved high
diagnostic accuracy in detecting surgical site
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infections from standard digital photographs.
These systems effectively processed wound
characteristics that might be overlooked
in routine assessment, with some models
demonstrating performance comparable to
specialist clinicians. The researchers noted
that while early implementations showed
promise, standardisation in image capture and
validation methodologies would be crucial for
clinical translation.

Machine learning encompasses several
approaches, each serving different purposes in
wound care analysis.

Supervised learning

Supervised learning involves training systems
using labelled examples. Much like a student
learning from worked problems, the system
analyses known cases to develop rules it can
apply to new situations. For example, systems
can learn how to interpret an abnormality e.g.
a fracture on an X-ray by repeatedly looking at
X-rays where the abnormality has previously
been diagnosed by a human (Sharma, 2023).

In wound care, supervised learning has
achieved notable success in standardising
wound assessment protocols. Convolutional
neural networks trained on 199 clinician-
annotated wound photographs achieved
comparable performance to human experts in
delineating wound boundaries and quantifying
granulation tissue percentages. The supervised
learning approach showed statistically similar
error distributions between Al-human and
human-human comparisons for false-positive
and absolute relative error, with only marginally
elevated false-negative area in Al tracings
(Howell et al, 2021).

This methodology — involving 110
photographs from one clinical centre and 89
from another — revealed that Al-derived wound
area measurements fell within the range of
inter-clinician variability observed between
four independent wound specialists. Masked
physician reviewers qualitatively rated Al
tracings as equivalent to human annotations
in 60.4% of cases, demonstrating supervised
learning’s capacity to replicate expert-level
wound boundary identification despite inherent
subjectivity in clinical assessments.

Beyond imaging, supervised learning
enhances predictive analytics for chronic
wound management. Gradient-boosted
decision tree models trained on 1.2 million
electronic health records demonstrated
robust prognostic capability, predicting 12-
week healing outcomes (Berezo et al, 2022).
These models analysed longitudinal wound
progression metrics, including surface area
reduction rates, tissue depth measurements,

and comorbidity profiles, to stratify patients

by healing likelihood. By identifying high-

risk trajectories through features such as
prolonged treatment duration and larger initial
wound size, these systems enable clinicians

to prioritise interventions earlier in the care
pathway, optimising resource allocation for
complex cases (Berezo et al, 2022).

Unsupervised learning

Unsupervised learning enables systems to
autonomously identify patterns within data
without explicit guidance, mirroring how
humans intuitively group objects based on
shared characteristics. These systems discern
commonalities and distinctions independently,
often uncovering unexpected patterns in
complex datasets.

In electron microscopy image analysis,
researchers have leveraged unsupervised
learning to uncover latent features, facilitating
the exploration of large-scale datasets without
prior annotations. For example, deep learning-
based unsupervised clustering methods have
differentiated cellular structures in electron
microscopy images, revealing biologically
meaningful distinctions among these structures
(Huang et al, 2020).

Similarly, in oncology research,
unsupervised classification techniques
have been applied to tumour cell nuclei
based on morphological and structural
similarities, thereby enabling more precise
stratification of cancer subtypes and assisting
in personalised treatment planning (Yuan
and Suh, 2018). In wound care, unsupervised
learning techniques have been integrated with
hyperspectral imaging (HSI) data to classify
wound areas, distinguishing affected tissue
from surrounding healthy skin. Recent research
has demonstrated the use of k-means
clustering for automated wound segmentation,
enhancing measurement accuracy, reducing
human error, and improving consistency in
wound assessment (Lee and Chen, 2023).

Deep learning
Deep learning represents a sophisticated
computational approach inspired by the
layered structure of biological neural networks.
By employing multi-tiered artificial neural
architectures, these systems autonomously
derive hierarchical data representations
through successive abstraction layers. Initial
processing stages detect elementary visual
components such as edges and textures, while
subsequent layers integrate these features
into increasingly complex patterns reflective of
anatomical structures.

An Al system trained on 76,000 UK and
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15,000 US mammograms significantly improved
breast cancer screening accuracy, reducing
false-positive recalls by 5.7% in the US and
1.2% in the UK, and lowering false-negative
rates by 9.4% (US) and 2.7% (UK) when tested
on 25,856 UK and 3,097 US cases (McKinney
et al, 2020). The system outperformed six
radiologists in an independent study. By
analysing mammographic features, it
detected malignancies more consistently
than human experts and demonstrated
robust generalisability across international
datasets. In simulations of the UK's double-
reading workflow, the Al reduced second-
reader workload by 88% while maintaining
diagnostic accuracy, highlighting its potential
to enhance efficiency in high-volume
screening programmes.

Spectral Al's DeepView® employs
multispectral imaging (MSI) across eight
spectral bands and a voting ensemble of
deep convolutional networks (U-Net, SegNet,
and a dilated fully convolutional network)
to identify non-healing (deep) burn regions
(Thatcher et al, 2023). A pilot study gathered
406 MSI images from 58 separate burns, using
21-day healing outcomes or biopsy findings
as ground-truth references. This ensemble
achieved approximately 81% sensitivity, 100%
specificity, and 97% positive predictive value
(PPV) for detecting deep partial- and full-
thickness burns, with performance markedly
improving after 2—-3 days post-injury.

These results suggest that DeepView® can
feasibly support earlier and more reliable
burn-depth assessments, particularly for
indeterminate wounds.

Natural language processing

Natural language processing (NLP) represents
another crucial Al capability, enabling systems
to understand and process human language.
This technology underlies everything from
clinical documentation analysis to automated
translation services. It involves teaching
computers to understand not just individual
words, but context, meaning, and the subtle
nuances of human communication.

In cardiovascular diagnostics, NLP has
proven particularly valuable for standardising
echocardiography report analysis. A 2024 study
validated an NLP algorithm on 200 annotated
transthoracic echocardiogram (TTE) reports,
achieving high precision scores of 0.93-

1.00 for detecting aortic stenosis and mitral
regurgitation severity (Xie et al, 2024). The
algorithm demonstrated robust performance in
classifying valvular pathologies. While the initial
validation sample was limited, the algorithm
was subsequently applied to 1,225,270 historical

TTE reports within the Kaiser Permanente
Southern California health system, successfully
standardising valve disease documentation
across diverse clinical narratives. This approach
addressed critical gaps in structured EHR data
by capturing nuanced severity descriptors like
“moderate-severe aortic stenosis” that often go
uncoded in traditional systems.

A study examined a hybrid Al-driven
approach for wound assessment, which
integrates a VGGI16 convolutional neural
network for wound image classification
- achieving 95% accuracy across seven
categories - with GPT-3.5-powered natural
language processing for generating treatment
recommendations (Keseraju 2024). The
system processes user-input text descriptors
(e.g., “burn from boiling water”) alongside
wound images, providing basic care
recommendations aligned with the predicted
wound type. For example, categorising a wound
as a "burn” triggers general cooling protocol
advice, while “laceration” prompts guidance on
bleeding control.

The study highlighted that 60% of patients
in rural areas face care delays due to travel
barriers (average 40-mile distance to
specialists), with diagnostic delays contributing
to complications in 30% of cases. While
GPT-3.5 offers broad recommendations, the
paper notes limitations in medical specificity,
advising users to “seek professional care
for severe wounds” rather than providing
granular therapeutic protocols. This integration
demonstrates NLP's role in contextualising
image-based diagnoses with patient-reported
symptoms, particularly valuable in resource-
limited settings.

Building on these core Al principles, this
review will explore their adaptation in wound
care - transforming documentation, predictive
analytics, and personalised treatment
strategies to address some of the critical
challenges in modern wound management.

The current context of wound care

The delivery of wound care faces significant
challenges within modern healthcare
systems. An ageing population with increasing
comorbidities contributes to growing patient
complexity, while healthcare services struggle
with resource constraints and workforce
shortages. Chronic wounds cost the National
Health Service (NHS) in England £5.6 billion
($7.39 billion) annually for unhealed wounds,
with total wound care expenditure reaching
£8.3 billion ($10.96 billion) in 2017/18, a figure
projected to rise with increasing demographic
pressures (Guest et al, 2020). The economic
burden of chronic wounds extends beyond the
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UK. In the US, chronic wound care is estimated
to cost healthcare systems over $28 billion
annually, with diabetic foot ulcers alone
contributing to approximately $9 billion in
expenditures (Sen, 2019). Similarly, European
healthcare systems report increasing financial
strain due to rising wound care demands,
highlighting the universal nature of these
challenges.

Current clinical challenges

Several critical challenges characterise modern

wound care delivery:

* Workforce limitations: Healthcare
systems face critical shortages of wound
care specialists, exacerbating reliance
on general practitioners for complex
wound management (Barakat-Johnson
et al, 2022). Studies highlight critical
knowledge gaps in wound assessment
and management among non-specialists
(Mohammed et al, 2022).

¢ Wound assessment variability: Traditional
ruler-based methods overestimate wound
area by 44% and exhibit significant inter-
clinician variability, impacting treatment
decisions, care continuity, and patient
outcomes (Wang et al, 2017).

* Documentation constraints: High
documentation workload places significant
time pressures on clinical teams, impacting
efficiency and limiting time available for
direct patient care. Traditional manual
methods require multiple steps, increasing
the administrative burden on clinicians
(Mohammed et al, 2022).

* Resource allocation: Healthcare providers
face increasing patient loads and workforce
shortages, requiring efficient resource
allocation to maintain high standards of
wound care (Barakat-Johnson et al, 2022).

Impact on clinical practice

The challenges outlined in modern wound care

delivery have direct consequences on quality

of care, service delivery, and clinical outcomes,
affecting both clinicians and patients:

* Quality of care: Time-consuming manual
wound assessments strain clinical
efficiency, limiting the time available for
direct patient care. For example, evaluating
115 wounds manually requires 5 hours 31
minutes, creating significant administrative
and clinical burden and reducing the
capacity for patient interaction. This
inefficiency delays assessment prevents
national and local targets from being met
and disrupts continuity of care (Mohammed
et al, 2022).

* Service delivery: Traditional wound

assessment methods remain time-intensive
and reliant on manual measurements,
restricting the number of patients clinicians
can effectively evaluate.

High patient loads combined with workforce
shortages exacerbate delays in wound
assessment, particularly in settings where
non-specialists are required to manage
complex wounds. The lack of standardised
and objective assessment tools further
contributes to inconsistencies in treatment
planning.

« Clinical outcomes: Timely wound
reassessment is crucial for preventing
complications and ensuring effective
treatment. However, delays in evaluation
reduce opportunities for early intervention,
increasing the risk of infection and
hospitalisation. Workforce shortages further
strain clinical capacity, limiting access to
specialist care and making timely treatment
in complex cases more challenging,
ultimately leading to preventable
complications (Barakat-Johnson et al,
2022).

Systemic healthcare pressures

Modern wound care is shaped not only

by clinical challenges but also by broader

systemic pressures that impact healthcare

sustainability, workforce readiness, and
administrative demands.

« Economic burden: The rising costs of
chronic wound care pose a growing
challenge to healthcare sustainability,
requiring optimised resource allocation
to meet increasing demand. Healthcare
expenditure on wound management has
surged in recent years, with a substantial
proportion of costs driven by prolonged
healing times and high dependency on
community-based services. The financial
strain on healthcare systems underscores
the urgency of improving efficiency in care
delivery and reducing the economic impact
of chronic wounds (Guest et al, 2020).

+ Workforce development: Advances in
wound care protocols demand ongoing
education and upskilling of healthcare
professionals, placing additional strain
on already limited training resources.

As wound management becomes
increasingly complex, the need grows for
specialised knowledge in areas such as
advanced dressings, infection control and
technology-assisted assessment. However,
healthcare providers often face constraints
in accessing dedicated wound care
education, leading to variability in clinical
practice and potential disparities in patient
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outcomes (Barakat-Johnson et al, 2022).

+ Documentation requirements: Increasing
regulatory demands for evidence-
based practice and clinical audits place
a growing administrative burden on
healthcare professionals. Documentation
now extends beyond routine wound
assessment to include detailed risk
stratifications, treatment justifications, and
multidisciplinary care coordination records.
These expanding requirements contribute to
clinician workload, reducing time available
for direct patient care. Additionally,
disparities in documentation practices
across healthcare settings can lead to
inconsistencies in wound management,
further complicating efforts to standardise
and improve patient outcomes.

Need for innovation

These mounting challenges highlight the urgent
need for innovative approaches to wound care
delivery. Traditional methods of assessment,
documentation, and monitoring struggle to
meet current healthcare demands. The sector
requires solutions that can enhance diagnostic
precision, automate documentation processes
and optimise resource allocation. Artificial
intelligence presents a promising avenue

to address these systemic issues through
standardisation of assessment procedures,
improvement in measurement accuracy,

and support for clinical decision-making
(Mohammed et al, 2022).

Al applications and impact in wound care
The translation of Al capabilities into clinical
wound care practice represents a significant
advancement in healthcare delivery. While
the fundamental technologies of machine
learning, deep learning, and natural language
processing provide the technical foundation,
their practical implementation has emerged as
a direct response to the pressing challenges in
modern wound care. These implementations
address critical needs in assessment
standardisation, resource optimisation, and
clinical decision support, transforming how
healthcare providers deliver and monitor
wound care across various clinical settings.

Clinical assessment and diagnostic
applications

Al has transformed clinical assessment in
wound care through multiple complementary
applications. These implementations build
upon proven healthcare technologies to
address specific clinical needs in measurement
accuracy, tissue classification, and healing
trajectory prediction. For instance, Al systems

classify chronic wounds (diabetic, pressure
injury, lymphovascular, surgical) with 83%
precision, using explainable heatmaps to
highlight decision-critical tissue features. For
diabetic wounds, the system achieves 72%
precision, effectively supporting automated
assessment and classification (Sarp et al, 2021).

The integration of Al-enhanced wound
monitoring technologies into clinical
workflows has improved the ability to detect
subtle changes in wound healing. Smart
dressings with integrated pH and temperature
sensors enable early infection detection
by identifying shifts in wound acidity and
inflammatory temperature changes. These
systems correlate increased temperature with
bacterial proliferation and monitor acidosis
trends indicative of infection progression (Su
et al, 2024).

Hyperspectral imaging technologies have
significantly advanced wound classification by
distinguishing between healthy and wounded
tissue based on spectral characteristics. This
imaging modality, when integrated with 3D
convolutional neural networks, has achieved
high accuracy in identifying wound severity,
independent of skin colour, making it a valuable
tool for clinical assessment (Cihan and
Ceylan, 2023).

Implementation of Al systems in clinical
practice

The practical implementation of Alin

wound care has demonstrated measurable
improvements in clinical efficiency and
accuracy. Mobile applications utilising

deep learning algorithms have significantly
enhanced wound measurement, reducing
assessment time by 54% while improving first-
attempt imaging accuracy to 92.2%. Al-driven
platforms streamline workflows, enabling faster
and more consistent wound documentation
compared to manual methods (Mohammed et
al, 2022).

Multispectral imaging combined with deep
learning improved intraoperative decision-
making in burn excision surgery. The Al system
achieved 87% accuracy in distinguishing
viable from non-viable burn tissue, enhancing
surgeon precision and reducing unnecessary
excision. When using Al guidance, surgeons
improved their specificity in stopping excision
from 42% to 67%, demonstrating its potential to
optimise tissue preservation and debridement
accuracy (Yu et al, 2023).

Smart dressing technologies integrate
biosensing capabilities with real-time wound
monitoring, enhancing diagnostic precision.
pH-sensitive hydrogels utilising polyaniline
polymers detect acidosis, indicating bacterial
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proliferation, while near-infrared spectroscopy
(NIRS) serves as a non-invasive tool for
measuring tissue oxygenation levels, facilitating
early detection of wound complications [19].

Advanced applications and care delivery
systems

The integration of Al technologies into wound
care has catalysed significant advancements
in service delivery, enabling healthcare
providers to extend specialist expertise beyond
traditional clinical settings whilst improving
care standardisation and resource utilisation.
These developments demonstrate how Al
applications can transform multiple aspects of
wound care delivery, from remote monitoring to
clinical decision support.

Remote monitoring and telehealth solutions
Remote monitoring platforms integrating
augmented reality (AR) and contactless wound
measurement have enhanced community-
based wound care delivery. These systems
provide accurate assessments of wound
morphology, improving clinician-patient
communication and enabling more consistent
monitoring outside traditional clinical settings.
Early studies suggest these technologies may
reduce the need for frequent in-person visits,
facilitating remote tracking of wound healing
progression (Mamone et al, 2022). Integration
with existing telehealth infrastructure has
facilitated real-time specialist guidance

for complex dressing changes and early
intervention protocols, particularly valuable

in resource-limited settings where specialist
access presents significant challenges.

Clinical decision support systems
Al-enhanced decision support systems are
increasingly integrated into wound care
to improve treatment planning and risk
assessment. Predictive analytics leveraging
patient comorbidities, wound characteristics,
and historical treatment data have
demonstrated strong potential in identifying
hospital-acquired pressure injury (HAPI) risks
before they become clinically apparent.

A comprehensive review by Toffaha
et al. (2023) identified 39 relevant studies
implementing Al and decision support systems
for pressure injury prediction, with models
achieving accuracy rates between 75% and
93% in identifying high-risk patients. Their
analysis revealed that machine learning
algorithms using electronic health records
could detect potential pressure injuries up
to 48-72 hours before clinical manifestation,
substantially expanding the intervention
window for preventive care. These Al models

frequently outperformed traditional risk
assessment tools by incorporating more
diverse data sources, including patient mobility
patterns, nutrition status, and environmental
factors that traditional scales often overlook.

While most implementations remain in
developmental or retrospective phases, with
limited real-world clinical deployment, the
evidence suggests that Al-powered decision
support tools could significantly enhance
standardised care delivery and risk mitigation
in wound management (Toffaha et al, 2023).
To complement these decision-making tools,
Al also offers promising solutions to improve
the tracking and documentation of wound
care quality.

Quality assurance and documentation

Quality assurance applications have emerged
as crucial tools for maintaining care standards
across healthcare settings. Advanced Al-driven
systems analysing wound photography and
clinical notes have demonstrated significant
improvements in documentation completeness
and adherence to clinical protocols. Studies
evaluating Al-powered wound assessment
tools indicate that these platforms enhance
record accuracy, reduce variability in wound
documentation, and support comprehensive
clinical governance by automating care
protocol tracking and identifying assessment
gaps. This enables proactive quality
improvement initiatives whilst reducing

the administrative burden on clinical staff
(Barakat-Johnson et al, 2022).

Workforce impact and workflow
transformation

The integration of Al technologies into clinical
workflows has contributed to significant
transformations in workforce efficiency and
task delegation. Al-powered decision-support
systems, such as deep learning models

trained for pressure ulcer classification, have
demonstrated the ability to enhance diagnostic
precision and reduce variability in assessments.

A Faster R-CNN model was implemented
and evaluated in clinical trials to assist
healthcare professionals in categorising
multiple stages of pressure ulcers, with the
aim of supporting standardised reporting
and minimising inconsistencies in wound
documentation (Katz and Gefen, 2025).

These advances enable clinicians to make
more informed treatment decisions, reducing
the burden of subjective assessment. While
Al applications continue to evolve, their
integration into triage and wound assessment
workflows suggests promising opportunities for
optimising specialist expertise allocation. Future
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Table 1. Al technologies in wound care: Capab

Al technology

Description

es, benefits, and implementation challenges.

Key capabilities

Benefits

Implementation
challenges

Computer
vision analysis

Smart
dressings and
biosensors

Multispectral/
hyperspectral
imaging

Natural
language
processing

Decision-
support
systems

Remote
monitoring and
telehealth

Predictive
analytics

Quality
assurance
systems

Al-powered imaging
systems using deep
learning algorithms

to assess wound
dimensions and tissue
characteristics.

Integrated sensors
within wound dressings
that monitor pH,
temperature, and other
biomarkers.

Advanced imaging
technologies that
capture data across
multiple spectral
bands to assess wound
characteristics.

Al systems that
understand and process
wound documentation
and clinical notes.

Al platforms analysing
wound data to
provide evidence-
based treatment
recommendations.

Al-enhanced platforms
enabling assessment
and specialist
consultation outside
traditional clinical
settings.

Al models analysing
patient histories and
wound characteristics to
anticipate complications
and healing trajectories.

Al tools for monitoring
wound care protocol
adherence and
documentation
completeness.

Reduces inter-observer
variability, ensures
consistent assessments,
accurately measures
wound dimensions,

and identifies tissue
characteristics with high
precision.

Detects changes in
wound biochemistry,
identifies early signs of
infection through shifts in
acidity and temperature,
and monitors healing
environment continuously.

Distinguishes between
healthy and wounded
tissue based on spectral
characteristics, identifies
viable vs non-viable tissue,
and functions independent
of skin colour.

Automates extraction
of key information from
clinical narratives,
standardises
documentation, and
generates structured
wound assessments.

Identifies hospital-
acquired pressure injury
risks, guides treatment
selection, and supports
standardised care
protocols.

Facilitates accurate
remote wound
assessment using
augmented reality
and contactless
measurement
technologies.

Identifies high-risk
patients, detects early
warning signs, and
predicts treatment
responses based on
multiple data streams.

Supports best practice
adherence through
automated auditing and
performance tracking.

Improves diagnostic
accuracy, predicts
healing trajectories,
assists in treatment
planning, and supports
objective assessment of
wound progression.

Enables early detection
of infection, reduces
unnecessary dressing
changes, and supports
timely intervention for
complications.

Enhances intraoperative
decision-making in burn
excision, improves tissue
classification accuracy,
and provides objective
assessment of wound
severity.

Reduces documentation
time, improves
consistency in reporting,
and enhances
communication
between care providers.

Enhances treatment
decisions, supports less
experienced clinicians,
and improves risk
assessment accuracy.

Extends specialist
expertise to remote
settings, reduces
unnecessary clinic visits,
and improves access to
care.

Enables proactive
intervention, improves
resource allocation, and
supports personalised
treatment planning.

Ensures consistent
care quality, identifies
improvement
opportunities, and
enhances clinical
governance.

Infrastructure
requirements, variability
in wound images, skin
tone bias affecting
accuracy, need for
diverse training
datasets, and rigorous
validation protocols.

Cost barriers, materials
integration challenges,
data transmission
issues, and clinical
workflow integration.

Specialised equipment
costs, technical
expertise requirements,
and integration with
existing imaging
workflows.

Training requirements
for diverse clinical
vocabularies, integration
with EHR systems, and
maintenance of medical
accuracy.

Clinical workflow
integration, clinician
acceptance challenges,
and need for regular
updates with evolving
evidence.

Connectivity
requirements, image
quality variability, and
patient technology
access issues.

Data quality
dependencies, model
transparency issues,
and need for continuous
validation and
refinement.

Implementation
complexity, integration
with existing quality
frameworks, and
change management
requirements.
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research will be crucial in further evaluating
Al's direct impact on staff confidence, training
outcomes, and workforce satisfaction (Fergus
et al, 2022).

Table 1 summarises the key Al technologies
used in wound care, outlining their capabilities,
benefits, and implementation challenges.

Challenges and limitations of Al in wound care
Despite Al's transformative potential in

wound care, its successful implementation

is contingent upon overcoming significant
challenges related to bias, costs, regulatory
frameworks, interoperability, and workforce
integration. Addressing these barriers is critical
to ensuring safe, effective, and equitable Al
adoption in clinical practice.

Bias in Al imaging and skin tone challenges
Al-powered wound imaging tools may
exhibit bias in diagnostic accuracy across
different skin tones, particularly for patients
with darker skin. This issue arises from the
underrepresentation of diverse skin tones

in Al training datasets, leading to higher
misclassification rates and potential delays in
diagnosis.

The Fitzpatrick scale, widely used in Al model
development, has some minor limitations
in representing global skin diversity, as it
was originally designed for UV sensitivity
classification in light-skinned individuals
(Fitzpatrick, 1988). As Al use increases, a
potential switch to a more inclusive skin tone
scales, such as the Monk Skin Tone scale
[Figure 1] — a 10-shade gradient developed
to better capture global skin diversity — offer
enhanced classification of skin tones and
undertones, improving Al fairness in wound
assessment contexts (Monk, 2022; Montoya et
al, 2024; Google Al, 2025).

Recent evidence underscores the
importance of recognising skin tone as a
crucial factor in wound care. A study by Katz
and Gefen (2025) demonstrated that skin
tolerance to shear forces varies considerably
across different skin tones, with darker skin
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exhibiting lower water content and higher
transepidermal water loss, leading to increased
pressure injury risk. These biomechanical
differences highlight the need for Al-driven
wound assessment systems to incorporate
diverse patient datasets to improve diagnostic
precision and equity in wound care.

Current research indicates several essential
approaches to mitigate bias in Al-driven wound
imaging. These include expanding training
datasets to include a wider spectrum of skin
tones (Groh et al, 2021; Groh, 2021), developing
Al models that adjust for skin reflectance
variations using multispectral imaging (Lee
and Chen, 2023), and utilising alternative
classification scales beyond the Fitzpatrick
scale (Monk, 2022; Montoya et al, 2024).

Economic barriers to implementation
Although Al-powered wound care solutions
offer long-term benefits, high initial costs
remain a significant barrier to adoption. Al-
integrated smart dressings require advanced
biosensing technology and specialised
materials, making them more expensive than
conventional dressings.

Additionally, Al-powered imaging systems
necessitate specialised hardware, such as
hyperspectral cameras, which can be costly for
resource-limited healthcare settings.

Implementation expenses, including staff
training and software integration, further
delay widespread adoption. Research efforts
must focus on developing cost-effectiveness
studies to justify Al adoption in wound care
pathways, creating scalable, low-cost Al
solutions tailored for community healthcare
settings, and establishing financial incentives or
reimbursement models for Al-integrated care
(Su et al, 2024).

Regulatory considerations and validation
challenges

In addition to financial constraints, Al tools

in wound care must also navigate complex
validation and regulatory approval processes
to ensure safety, accuracy and clinical efficacy.

Figure 1. The Monk

Skin Tone (MST) scale
showing ten gradations
of skin tones (A-J) from
lightest to darkest with
corresponding hex
colour codes. The MST
Scale was developed to
provide more inclusive
representation of human
skin tone diversity
compared to previously
used scales. (Source:
Monk, 2019).
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International regulatory bodies set strict

compliance standards:

* SO 13485: Establishes quality management
systems for medical device development.
Compliance with ISO 13485 ensures
that organisations maintain effective
processes throughout the product lifecycle,
emphasising risk management and design
control activities (1SO, 2016).

« Food and Drug Administration (FDA, US):
Requires pre-market approval for Al-
powered imaging systems used in clinical
practice. The FDA provides guidance
on regulatory considerations for Al/ML-
based medical devices, emphasising
transparency, validation and real-world
performance data to support regulatory
submissions.

« CE Mark (Europe): Ensures compliance
with European medical device regulations.
All medical devices, including those
incorporating machine learning, must
comply with the CE marking requirements
under the relevant EU regulatory frameworks
to be lawfully marketed within Europe.

* General Data Protection Regulation
(Europe) and Health Insurance Portability
and Accountability Act (US): Regulate
patient data privacy and Al compliance.

Ensuring compliance with these standards

is critical for the safe deployment of Al in
clinical settings. However, the dynamic nature
of Al models, which continuously learn from
new data, poses challenges for traditional
regulatory approval frameworks.

Future regulatory efforts must address
adaptive Al approval processes to
accommodate self-learning models,
harmonisation of Al medical device regulations
across jurisdictions, and transparent reporting
requirements for Al-based clinical decision-
support tools.

Interoperability and technical integration
For Al to be effective in wound care, it must
seamlessly integrate with existing electronic
health records (EHRs) and hospital workflows.
Interoperability remains a major challenge due
to inconsistent data formats that hinder AI-EHR
communication, variability in Al model outputs
making standardisation difficult, and security
concerns as Al-driven wound assessment tools
must adhere to data-sharing regulations.
Healthcare organisations must focus
on developing standardised Al frameworks
that can interface with multiple EHR systems,
ensuring secure Al-EHR integration to protect
patient data privacy and facilitating clinician
adoption through intuitive Al interfaces within

EHR platforms (Mohammed et al, 2022).

Infrastructure and model optimisation
requirements

Successful Al deployment in wound care
settings depends on robust infrastructure
to support image capture, data processing,
and clinical integration. Clinical areas must
be equipped with adequate lighting, space
for image capture, and reliable network
connectivity for Al-driven wound assessment
(Barakat-Johnson et al, 2022). Technicall
architecture must seamlessly integrate with
existing EHRs and hospital IT frameworks to
ensure smooth data interoperability.

Beyond physical and technical
infrastructure considerations, implementing
smart dressing technologies presents practical
challenges. Material incompatibilities between
flexible electronics and biological tissues can
lead to degradation in electrical performance
and adhesion over time. To ensure stable
conductivity and sensor functionality,
advanced materials such as liquid metal
interconnects and gold-based electrodes
have been developed, improving stretchability
and long-term adhesion in dynamic wound
environments. These optimisations are
essential for maintaining reliable wound
monitoring and infection control, particularly
in cases where wounds are subject to frequent
mechanical strain (Su et al, 2024).

Workforce adaptation and training
considerations

Al adoption in wound care requires clinicians to
be equipped with the necessary digital literacy
to interpret Al-generated recommendations
(Car et al, 2025). Many healthcare professionals
lack Al-specific training, particularly in
decision-support tools, express concerns about
Al replacing clinical judgement, and struggle
with integrating Al outputs into routine patient
care workflows (Heerschop, 2023; Sivaraman et
al, 2023).

To ensure effective Al adoption, workforce
development strategies should incorporate
comprehensive clinician training programmes
focused on Al literacy, transparent Al decision-
support systems to improve trust, and clear
guidelines on Al-human collaboration,
reinforcing Al as an augmentative tool rather
than a replacement (Heerschqp, 2023;
Sivaraman et al, 2023; Car et al, 2025).

Future developments and strategic
recommendations

The evolution of Al in wound care continues to
advance, shaped by both current challenges
and emerging technological capabilities.
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Looking ahead, many of the current limitations
can be overcome by next-generation Al
developments and strategic implementation.
The next phase of development will be defined
by enhanced predictive models, seamless
clinical integration and automated data-driven
decision-making. These advances hold the
potential to revolutionise wound management
by enabling earlier interventions, reducing
hospitalisation rates, and improving patient
outcomes.

Advanced clinical applications

Predictive analytics enhancement
Next-generation Al systems offer enhanced
predictive capabilities for wound healing
trajectories. These systems analyse multiple
data streams—such as tissue characteristics,
patient factors, and treatment responses—to
support more proactive intervention. Emerging
Al-powered wound prediction models leverage
deep learning to detect early signs of infection,
tissue deterioration, and delayed healing. These
systems analyse historical wound data and
real-time physiological markers to provide
proactive treatment recommendations. In
diabetic foot ulcer management, for example,
predictive Al has been used to identify patients
at high risk of amputation, allowing clinicians
to intervene sooner and improve limb salvage
outcomes. Research indicates that early
identification of healing complications could
significantly reduce hospital admissions and
improve patient outcomes(Guest et al, 2020).

Integration of clinical data

Future systems will increasingly combine
information from various sources to enhance
personalised wound care. The integration

of EHRs, wound imaging tools, and social
determinants of health data is expected to
refine predictive analytics, optimise treatment
pathways, and improve patient outcomes.
Platforms like DHIS2 have demonstrated the
potential to aggregate clinical, demographic,
and geographic data, supporting data-driven
decision-making in wound care (Paddo et al,
2024).

Pattern recognition advances

Advanced machine learning algorithms are
increasingly capable of identifying subtle
changes in wound characteristics over time.
These systems learn from clinical outcomes,
continually refining their ability to detect early
warning signs of complications. Recent deep
learning models have demonstrated the ability
to predict wound healing stages by analysing
collagen fibre patterns in histological images,
achieving an accuracy of 82% in classifying six

distinct healing phases (He et al, 2024). Such
advancements provide valuable insights into
wound progression and have the potential to
enhance Al-driven wound care management.

Documentation automation

Future systems will further reduce
administrative burden through advanced
natural language processing (NLP) tools.
Al-powered documentation platforms have
demonstrated the ability to generate post-
operative reports with greater accuracy than
those manually written by surgeons, reducing
errors and enabling clinical staff to dedicate
more time to direct patient care (Lapid, 2025).
Additionally, Al-driven clinical documentation
tools are being adopted by healthcare systems
worldwide to automate medical notetaking and
streamline administrative workflows. Systems
like Abridge have been integrated into more
than 100 hospitals across the US, including

rural and paediatric care settings, highlighting
the growing role of NLP in reducing clinician
workload (Reuters, 2025).

Strategic implementation recommendations

The successful integration of Al technologies

in wound care requires careful consideration

of implementation strategies. Healthcare

organisations must develop clear objectives

and implementation plans that align with

clinical needs and service delivery goals

(Barakat-Johnson et al, 2022).
Essential elements for successful

implementation include:

« Comprehensive staff training programmes
that build both confidence and competence

« Clear protocols for Al integration into
existing clinical workflows

* Robust validation processes for Al-driven
decision support

+ Regular evaluation of clinical outcomes and
system performance

« Mechanisms for ongoing feedback and
system refinement

Staff development remains crucial to the
successful integration of Al, and organisations
must invest in comprehensive training
programmes that enhance both confidence
and competence (Ma et al, 2024).

Research priorities
Several key areas require further investigation
to advance Al implementation in wound care

Clinical outcomes research

Long-term studies examining the impact of Al
implementation on clinical outcomes remain
essential. Research must address:

Wounds International 2025 = Volume: 16 Issue: 3

37



Practice development

- Comparative effectiveness of Al-
augmented versus traditional care:
Assessing whether Al-enhanced wound
care leads to superior clinical outcomes
compared to standard care models.

« Impact on healing rates and complications:

Investigating how Al-driven wound
assessment tools influence healing
time, infection rates, and overall wound
progression.

 Clinical safety and risk assessment:
Evaluating potential risks associated with
Al-guided interventions, ensuring patient
safety and adherence to clinical guidelines.

+ Integration with existing care pathways:
Understanding how Al can seamlessly
integrate into multidisciplinary wound
care teams and EHR systems for optimal
workflow efficiency.

Emerging evidence underscores the
importance of these investigations in shaping
Al deployment in wound care. Recent research
demonstrates that deep learning models

can accurately predict wound healing
trajectories based on image analysis and
clinical parameters, thereby improving early
intervention strategies (Schlereth et al, 2022).
Furthermore, Al-driven risk stratification
models have shown potential in identifying
patients at higher risk of wound complications,
enabling proactive management and resource
allocation (Patel et al, 2023).

Economic impact analysis

Healthcare organisations require robust

evidence regarding the economic impact of Al

implementation. This encompasses both direct
costs and potential savings through improved
efficiency. Research should examine:

« Implementation costs across different
healthcare settings: Evaluating the initial
investment required for Al technologies,
including hardware, software, and training,
to understand financial barriers and
scalability in various environments.

+ Long-term cost savings and return on
investment: Investigating how Al can
reduce operational expenses, such as
decreasing hospital readmissions and
optimising resource allocation, thereby
enhancing the financial sustainability of
healthcare systems.

+ Healthcare resource utilisation
optimisation: Assessing Al's role in
streamlining workflows, reducing
clinician workload, and improving patient
throughput, leading to more efficient use of
medical resources. (Dennis, 2023).

« Sustainability and scalability metrics:

Determining the long-term viability of
Al solutions, including their adaptability
to evolving medical practices and

their capacity to scale across different
departments or institutions.

By addressing these areas, healthcare
organisations can make informed decisions
about integrating Al technologies, ensuring that
such innovations lead to both improved patient
outcomes and economic benefits.

Patient experience investigation

Understanding the patient perspective on

Al-supported care delivery is increasingly

important. Ensuring that Al tools align with

patient needs is essential for acceptance and
adoption. Research suggests that patient trust
in Al-driven healthcare solutions depends on
transparent implementation and clinician

oversight (Barakat-Johnson et al, 2022).

Key areas for investigation include:

- Patient acceptance and experience with
Al-augmented care: Assessing how Al
influences patient comfort and engagement
in wound care treatment.

« Impact on patient-provider
communication and relationships:
Examining whether Al-supported
decision-making enhances or hinders
communication between patients and
healthcare providers.

+ Accessibility and equity considerations:
Evaluating how Al technologies impact
different patient demographics and whether
they introduce unintended disparities
(Barakat-Johnson et al, 2022).

- Patient-reported outcomes and
satisfaction measures: Investigating how
Al-assisted wound care affects patient
satisfaction and clinical engagement.

Realising the transformative potential of Al'in
wound care requires a delicate equilibrium
between cutting-edge technological
advancement and pragmatic clinical
implementation. As these sophisticated
systems continue to evolve across healthcare
settings, their sustained success will
increasingly depend on how thoughtfully
innovations are integrated into existing care
pathways and clinical practices. While Al
applications offer promising solutions to
longstanding challenges in wound assessment,
treatment planning, and resource allocation,
we must recognise that technological
capability alone cannot guarantee improved
patient outcomes.

The full potential of Al-augmented
wound care can only be realised through
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methodical strategic implementation that
considers workflow integration, robust
validation protocols, and ongoing performance
evaluation. Furthermore, meaningful clinician
engagement throughout development and
deployment phases remains essential, ensuring
that Al tools genuinely address real-world
clinical needs rather than creating additional
administrative burdens. Equally important is
the establishment of comprehensive ethical
oversight frameworks that address data
privacy concerns, mitigate potential biases

in imaging technologies, and maintain the
primacy of patient-centred care values. It is
through this balanced approach - embracing
innovation while maintaining clinical rigour -

that Al can truly transform wound care practice.

Conclusions: Shaping the future of Al in wound

care

Artificial intelligence is revolutionising wound

care by addressing critical challenges in

assessment variability, resource allocation,
and early intervention. With chronic wounds
creating both significant economic burden
and clinical challenges across healthcare
systems, Al-driven solutions are emerging

as indispensable tools for clinicians. These

solutions have already demonstrated their

ability to improve diagnostic accuracy,
optimise resource allocation, and support less
experienced healthcare professionals, creating

a more resilient and responsive healthcare

system.

The evidence for Al's transformative
potential in wound care is compelling.
Automated assessment systems have
achieved sub-millimetre precision (mean error:
0.3mm) in wound measurement, significantly
outperforming traditional manual methods
(Mohammed et al, 2022).

Al-powered decision support systems have
enabled nurses to manage complex cases
with specialist-level accuracy, achieving
concordance rates of 92% in pressure ulcer
assessment (Fergus et al, 2024). These
achievements underscore Al's capacity to
enhance clinical practice while addressing
workforce challenges.

Despite this immense potential, Al's full
integration into wound care requires careful
planning and alignment with clinical priorities.
The successful adoption of Al must be
underpinned by key principles:

- Augmenting, not replacing, clinical
expertise: Al must function as a decision-
support tool, reinforcing rather than
substituting professional judgement.

The technology should enhance clinical

decision-making while maintaining the

essential human elements of wound care
(sezgin, 2023).

« Ensuring seamless workflow integration:

Al applications should be incorporated into
existing clinical pathways with minimal
disruption, ensuring smooth adaptation for
clinicians and patients alike. This integration
must consider the varied settings where
wound care is delivered, from acute
hospitals to community care.

« Comprehensive training and workforce
development: Healthcare professionals
must be adequately trained in the
interpretation and utilisation of Al outputs
to enhance confidence in decision-making.
This includes developing digital literacy
and understanding Al's capabilities and
limitations (Guest et al, 2020).

« Regulatory compliance and ethical
considerations: Robust validation studies
and adherence to ethical Al governance are
paramount to ensuring patient safety and
trust in Al-driven interventions. This includes
addressing potential biases in Al systems,
particularly regarding diverse patient
populations (Montoya et al, 2024)).

« Continuous evaluation and iterative
improvement: Al models should be routinely
assessed for accuracy, efficiency, and bias
mitigation, allowing ongoing refinements
to enhance their clinical utility. This process
must be data-driven and responsive to
real-world clinical outcomes.

The path forward requires strong
interdisciplinary collaboration among clinicians,
Al researchers, and policymakers to ensure that
Al-driven wound care solutions remain clinically
relevant, ethically sound, and seamlessly
integrated into healthcare systems. This
collaboration must address current challenges,
including cost barriers, infrastructure
requirements, and interoperability issues,
while maintaining focus on improved patient
outcomes.

Looking ahead, Al's role in wound care will
continue to evolve, driven by advancements
in predictive analytics, deep learning, and
wearable health technologies. The future
promises more sophisticated Al systems
capable of detecting subtle wound changes,
predicting healing trajectories, and delivering
personalised treatment recommendations.
These systems will increasingly integrate
multiple data streams, combining clinical
observations with patient-specific factors to
optimise care delivery (Mohammed et al, 2022).

Equally important is the human element in
Al adoption. Engaging healthcare professionals
throughout the implementation process fosters
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acceptance and trust, ensuring that Al solutions
align with real-world clinical needs. Additionally,
understanding the patient perspective is vital,
as Al-supported wound care must prioritise
individualised treatment approaches, improved
accessibility, and enhanced quality of life.
This patient-centred approach must consider
diverse populations and healthcare settings to
ensure equitable access to Al-enhanced care.
The economic implications of Al adoption
in wound care are significant. While initial
implementation costs may be substantial,
the potential for reduced hospital admissions,
improved healing outcomes, and optimised
resource utilisation suggests long-term cost-
effectiveness [19]. Healthcare organisations
must carefully balance these factors while
maintaining focus on quality care delivery.

Conclusion

As Al continues to evolve, its success in wound
care will be defined not just by its ability to
streamline workflows, but by its capacity to
enhance patient outcomes, support clinical
expertise, and uphold the highest standards

of care. By embracing Al's potential while
prioritising ethical implementation and clinician
engagement, healthcare organisations can
ensure that Al-driven wound care remains both
innovative and patient-centred, shaping a
future where technology and human expertise
work in harmony to deliver optimal wound care
outcomes. ®
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