
Introduction
This article describes what MMPs are and the 
importance of their role in normal and disrupted 
wound healing. In particular, it discusses the 
relevance of MMPs to clinical practice, including 
current and potential interventions aimed at 
modulating their activity.
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What are MMPs? 
The matrix metalloproteinases (MMPs) are part of the larger 
family of metalloproteinase enzymes that play an important 
part in wound healing1,2. 

Enzymes are proteins that facilitate biological reactions,  
but are not themselves used up or changed in the  
reactions. They generally act on a limited number of 
molecules (known as the enzymes’ substrates) and 
physically change them into other substances.  
Proteinases (also known as proteases) are enzymes 
that act on proteins, usually by cutting up the 
protein molecule.

Natural substrates for the different MMPs vary 
substantially, but include important extracellular 
matrix (ECM) proteins such as collagen, gelatin and 
proteoglycans. The MMPs degrade these proteins 
by cutting them into pieces. Different MMPs may 
act sequentially and on different parts of the  
same substrate.

Why are they called matrix 
metalloproteinases? 
The name ‘matrix metalloproteinase’ (or ‘matrix 
metalloprotease’) indicates the key properties 
shared by the MMPs. They all:
n	 preferentially breakdown proteins comprising 

the extracellular matrix of tissues
n	 require a metal ion (zinc) at the active centre 

of the enzyme.

How are MMPs produced? 
In normal wound healing, MMPs are produced by:
n	 activated inflammatory cells (neutrophils 

and macrophages)
n	 wound cells (epithelial cells, fibroblasts and vascular 

endothelial cells).

When first synthesised, MMPs are in a latent (inactive or 
pro-MMP) form. They are activated by other proteases that 
clip off a short section of the molecule. This opens up the 
active centre of the MMP molecule and allows the MMP to 
bind to its protein substrate(s). Other molecules called ‘tissue 
inhibitors of metalloproteinases’ (TIMPs) can inhibit activated 
MMPs and block the activation of pro-MMPs (Figure 1).

So far, 23 human MMPs have been identified. MMP-1, MMP-2, 
MMP-8 and MMP-9 have been the particular focus of research 
in relation to wounds.

While most MMPs are secreted into the surrounding ECM, some 
MMPs remain associated with cell membranes, and are known 
as ‘membrane-type’ MMPs (MT-MMPs). This group of MMPs 
is thought to play an important role in activating pro-MMPs, 
as well as activating pro-TNF (tumour necrosis factor – an 
important mediator involved in inflammation and cell death).
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Figure 1 Overview of the production, activation and inhibition of MMPs
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MMPs in normal  
wound healing
MMPs play essential and beneficial roles 
in at least five major processes in normal 
wound healing (Box 1).

Box 1  MMPs in normal wound healing

Removal of damaged ECM
MMPs break down the damaged 
ECM that occurs at the edge of acute 
skin wounds. This enables new ECM 
components (eg collagen, fibronectin, 
and proteoglycans) synthesised by 
wound cells to integrate correctly with 
intact ECM components at the  
wound edges.

In addition, MMPs help to slough 
out biofilms. Biofilms consist of 
a gelatinous matrix produced by 
bacteria that shields the microbes 
from the immune system. The MMPs 
secreted by inflammatory cells 
surrounding biofilms digest (loosen) 
the attachments between the bacterial 
biofilms and the wound bed. 

Angiogenesis
MMPs degrade the basement membrane 
that surrounds capillaries. This allows 
vascular endothelial cells to migrate 
from capillaries near the wound and 
to establish new blood vessels into the 
wound bed3,4. 

Migration of cells
MMPs (especially MMP-1) are required for 
migration of epithelial cells, fibroblasts, 
and vascular endothelial cells across 
or through the ECM. When epithelial 
cells at the edge of a wound begin to 
proliferate and migrate as a sheet across 
the wound bed, the epithelial cells just 
trailing behind the leading edge of 
the sheet secrete MMP-1. This partially 
digests the type 1 collagen and weakens 
the attachment of the cells’ membranes 
to the matrix, allowing the cells to move 
across the collagen matrix2,5,6. 

Contraction
MMPs secreted by myofibroblasts are 
necessary for contraction of newly 
synthesised scar ECM. Large excision 
wounds in humans can contract up to 
about 20% of the initial wound area7,8. 

Scar remodelling
Repair of skin wounds initially produces a 
highly disorganised scar matrix. However, 
wound cells continue to produce low 
levels of MMPs long after the initial scar 
is formed. These MMPs slowly remove 
the disorganised ECM, which is gradually 
replaced by ECM with a more normal and 
more highly organised structure1,9,10. 

Why do MMPs 
sometimes cause 
problems?
Although MMPs have the important role 
of breaking down proteins so that new 
tissue forms, when MMPs are present in 
a wound bed at too high a level, for too 
long a time, and in the wrong places, they 
begin to degrade proteins that are not 
their normal substrates. This can result in 
‘off target’ destruction of proteins, such 
as growth factors, receptors and ECM 
proteins, that are essential for healing, and 
so ultimately impair healing.

Substantial evidence has amassed that 
MMPs in general are highly elevated 
in wounds with delayed healing 
compared to acute healing wounds11-22. 
The potentially damaging effects of 
these high levels is compounded by the 
fact that TIMP levels in chronic wounds 
are generally slightly lower than in 
acute wounds.

How do we know about 
the effects of high levels 
of MMPs on healing?
Proteases came onto the wound 
healing radar when it was discovered 
that the ECM of wounds that were 
not healing did not contain intact 
fibronectin, a molecule necessary 
for cell adhesion and growth 
factor signalling23. Moreover, intact 
fibronectin reappeared in the wound 
bed as a wound began to turn the 
corner towards healing23. 

Further work demonstrated that 
the neutrophil-derived protease 
elastase was the biggest contributor 
to fibronectin degradation in non-
healing wounds, and that fibronectin 
degradation products stimulate the 
release of MMPs24,25. 

Several groups have gone on to show 
that the amount of active MMP-9 is 
inversely correlated with wound  
closure rate, ie high levels of active  
MMP-9 correlate with lower wound 
closure rates15,19,20. 

It is important to note, however, that 
while most non-healing wounds in 
these studies had elevated MMP-9 
activity levels, not all did, meaning that 
excessive MMP-9 activity is an important 
contributor to delayed healing, not 
necessarily the only cause. 
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How else are MMPs involved in  
delayed healing?
Protease inhibitors
Significantly, several MMPs are able to deactivate alpha-1 protease 
inhibitor (a1-PI) and alpha-2 macroglobulin (a2M), which are two 
important natural inhibitors of the (non-MMP) serine proteases 
elastase and plasmin. High levels of MMPs in wounds can therefore 
indirectly lead to high levels of elastase (which degrades elastin, 
a major constituent of elastic tissue fibres) and plasmin (which 
digests fibrin, a protein found in blood clots). 

Inflammatory cytokines and free radicals 
Once activated at wound sites, inflammatory cells release 
cytokines (cell-to-cell signalling molecules) such as TNF, IL-1 and 
IL-6. When in excess, these cytokines stimulate production of 
abnormally high levels of proteases (including MMPs) and free 
radicals, which further fuel the inflammatory process26,27.

Free radicals, such as hydrogen peroxide, kill bacteria and clean 
the wound. However, when free radicals are in excess, they can 
cause tissue damage. Free radicals have been implicated in the 
development and the persistence of venous leg ulcers and it has 
been shown that scavenging the free radicals using antioxidants 
improves healing in such wounds28.  

Growth factors
Many investigators have shown that growth factors (eg platelet 
derived growth factor (PDGF), epidermal growth factor (EGF) 
and vascular endothelial growth factor (VEGF)) incubated in 
exudate from non-healing wounds are rapidly degraded and 
that such degradation can be prevented by the addition of a 
protease inhibitor to the exudate29-31. This suggests that in non-
healing wounds the growth factor degradation may be due to 
excessive levels of proteases.
 
Bacterial proteases have also been shown to rapidly degrade 
growth factors32. The extent of growth factor degradation 
is dependent upon the type of bacteria, as each species 
produces different levels and types of proteases. This variance 
is associated with the virulence of the bacteria and may explain 
why certain bacteria even in small quantities can be extremely 
detrimental to the wound healing process.

Cell numbers
Degradation of growth factors removes the signal that stimulates 
proliferation of the cells required for tissue replacement 
(fibroblasts, endothelial cells and keratinocytes). Indeed, in 

vitro studies have shown that exudate from healing wounds 
stimulated cell division; in contrast, exudate from non-healing 
wounds inhibited cell division33,34.

Bioburden
The normal host response to bacterial contamination of a wound 
is to elicit an inflammatory response that allows inflammatory cells 
to infiltrate and clean the wound in an effort to prevent infection. 
However, if pathogens are in excess they can cause problems, initially 
delaying healing but eventually leading to a wound infection35. 

Recent research suggests that a high percentage (about 60%) of 
wounds with delayed healing have bacterial biofilms and that 
bacteria in biofilms are very resistant to killing by host antibodies, 
inflammatory cells, antibiotics and disinfectants36-38. 

Consequently, it seems probable that in many cases, acute 
wounds become colonised by bacteria that transform in a matter 
of days into persistent biofilm bacteria and establish a long-
term inflammatory source. The inflammatory cells activated 
in response to the biofilm secrete reactive oxygen species 
(free radicals) and proteases, including MMPs, in an attempt to 
destroy the bacteria. Unfortunately, the proteases also destroy 
pro-healing factors and ECM components in the wound bed, 
disrupting the wound healing process.

How do we know when raised levels of 
MMPs are causing healing problems?
The ability to heal is affected by a wide range of intrinsic and 
extrinsic factors. For example, increased age, medication (eg 
steroids), poor nutrition, comorbidities (eg diabetes, venous 
disease, peripheral arterial disease) and wound bioburden can 
each interfere with wound repair processes39-41. 

“The process of healing is powerfully 
programmed and very difficult to obstruct,  
but it has its enemies.” 42

Regardless of the underlying cause of the delay, wounds 
with delayed healing generally share similar biochemical 
characteristics, including43,44:
n	 elevated inflammatory markers
n	 high levels of proteases, including MMPs
n	 diminished growth factor activity
n	 reduced cell numbers in the wound. 
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As described, these characteristics 
result in a hostile wound environment 
in which new tissue and growth 
factors are degraded and the wound is 
perpetuated. Wounds in this situation are 
often referred to as being ‘stuck’ in the 
inflammatory phase of healing, where 
they can remain for months and  
even years45. 

Breaking the vicious circle – 
stimulating healing
Management of a patient with a 
wound that is not healing requires an 
integrated, multidisciplinary approach 
that systematically works to alter the 
inflammatory phase of healing. A good 
analogy is to liken the wound to being 
stuck in a vicious circle (Figure 2): the 
clinician needs to use interventions to 
break out of the circle and move the 
wound on to the next phase of healing.

Breaking out of the circle will involve 
alleviating any environmental, systemic, 
local or wound related factors that 
might contribute to the delay in healing. 
The overall aim is to tip the balance in 
favour of the repair processes. 

At the level of the wound, breaking out 
of the circle (Figure 3) and stimulating 
healing will involve:
n	 treating the cause – ie reducing 

the inflammation
n	 managing the consequences 

– ie reducing protease activity 
whilst maintaining a moist  
wound environment.

Reduction of excessive protease activity 
is focused on the wound and may be 
achieved by:
n	 removing proteases – eg by 

absorption of protease-rich  
wound fluid into dressings or by 
removal with negative pressure 
wound therapy

Figure 2 Cullen’s circle – the vicious circle of delayed wound healing
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Figure 3 Breaking out of the circle to encourage healing
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focused on dressings that act to  
reduce levels of MMPs by absorbing 
wound exudate and holding the 
proteases within the dressing structure. 
In effect, this binds and inactivates  
the excess MMPs present in the  
wound environment. 

Many studies have been published 
on the first MMP modulating dressing 
(Promogran – containing oxidised 
regenerated cellulose (ORC) and collagen) 
and latterly a version which contains silver 
(Promogran Prisma)48. These illustrated 
the ability of this dressing to reduce 
protease activity, scavenge free radicals 
and control bacterial levels48,49. While 
many of the initial studies involved in vitro 
assays, these dressings have also been 
assessed and shown to remove these 
negative factors in fluids from wounds 
with delayed healing (ex vivo studies)50. 
These ex vivo evaluations offer important 
benefits over in vitro assays as they more 
closely reflect the true biochemical nature 
of the wound. A randomised controlled 
clinical study has also shown the ability 
of collagen/ORC dressings to reduce 
proteases and that this was correlated to a 
positive effect on healing51,52.

It is also important to recognise that 
as new products, such as protease-
modulating dressings, are developed to 
correct a specific biochemical defect, they 
may not be applicable for all problematic 

Summary 
It is well established that MMPs are required at the right amount, in the right place, and 
in the right time frame (duration) for a wound to heal. They play key roles in debriding 
damaged/devitalised ECM, angiogenesis, re-epithelialisation, wound contraction, and 
scar remodelling. However, there is strong clinical evidence that chronically elevated 
levels of MMPs and other proteases prevent wounds from healing, and that treatments 
that lower MMP activities promote healing of wounds that have stalled53-55. 
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wounds, but rather to a sub-group with 
that particular biochemical imbalance.

Measuring MMPs
At present, the clinician has no means 
of measuring MMP activity in wound 
fluids or biopsies. Prototype devices are 
under development. It is hoped that 
measurement of MMP activity will provide 
critical information on the  
healing trajectory of a wound and the 
suitability of the wound for advanced 
biological therapies.
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n	 reduction of protease activity – eg by 
collagen-based dressings

n	 inhibition of MMP synthesis – eg by 
dressings containing polyhydrated 
ionogen, an emerging approach that 
awaits full clinical evaluation46,47.

When indicated, wound bioburden can 
be reduced with antimicrobial dressings 
(eg silver- or iodine-based technologies) 
and antibiotics35. However, antibiotics 
and antimicrobials are less effective 
at treating bacteria in a biofilm, and 
physical removal by debridement is 
currently the only demonstrated method 
for removing biofilm burden.

MMP modulating 
dressings
A number of dressings are currently being 
marketed as modulating protease activity. 
Reducing the excessive protease activity 
in the wound is thought to convert 
the wound to a healing state. Products 
designed to reduce excessive proteolytic 
activity and rebalance the wound 
environment ideally need to inactivate 
both host- and bacteria-derived MMPs 
and other proteases.

Modulation of MMP activity by dressings 
seems to be achieved by one of three 
approaches, as described above. 
A significant amount of research has 
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