
Determinants of blood of rheology
Considering that the values of hematocrit, 
found in the clinical conditions associated 
to the secondary hemorheological disorder, 
are normal, ergo the other hemorheological 
determinants that must be considered are red 
cell aggregation, which influences the flow 
dynamics and, especially, the resistance of blood 
in vivo (Cabel et al, 1997). In vivo erythrocyte 
aggregation arises at low shear forces or stasis 
and it is the principal determinant of low 
shear rate blood viscosity (Cabel et al, 1997). 
Erythrocyte aggregation is a reversible process;  
the aggregates are dispersed by mechanical 
or fluid flow forces, however, they reform 
when the forces are removed. Erythrocyte 
aggregation is primarily regulated by the 
intrinsic cell characteristics of RBCs and by the 
concentration of the macromolecules or of 
the plasma level of some proteins (Rampling 
et al, 2004). In blood, fibrinogen is one of 
the most important component of blood 
viscosity referable to its effective tendency to 
increase both plasma viscosity and erythrocyte 
aggregation (Lee, 1997). 

There are two models for erythrocyte 
aggregation (Neu and Meiselman, 2007): 
bridging and depletion. In the first, erythrocyte 
aggregation occurs when the bridging forces, 
due to the adsorption of macromolecules 
onto adjoining cell surfaces, exceed the 

Previously, the authors examined the clinical 
conditions responsible for primary and 
secondary hyperviscosity, and skin ulcers 

complications (Caimi et al, 2017a), while afterwards, 
the role of the primary plasma hyperviscosity in 
the pathophysiology of skin complications was 
examined (Caimi et al, 2017b), as well as the role of 
primary sclerocythemic hyperviscosity in skin ulcers 
(Caimi et al, 2017c).

The aim of this article was to establish the 
influence of the secondary hyperviscosity disorder, 
usually found in diabetes mellitus (DM), arterial 
hypertension, critical limb ischaemia and chronic 
venous disease which, during their clinical course, 
can complicate with leg ulcers.

Rheological alterations play a specific role in 
microcirculation when a potentially ischaemic 
condition emerges. Some changes develop in 
microcirculation in relation to the diameter and 
the wall permeability of microvessels, to the cell 
metabolism and to the haemorheological profile. 
Physiologically, the blood flow is related to blood 
velocity, vessel diameter and structure, and 
whole blood viscosity; the latter is determined by 
haematocrit, plasma viscosity, red blood cell (RBC) 
aggregation and deformability. 

Clinical and experimental data have 
demonstrated that while the erythrocyte 
aggregation occurs at low shear flow, red cell 
deformability and plasma viscosity are all significant 
at high shear flow.
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disaggregating forces (Snabre and Mills, 
1985; Brooks, 1988). In the second model, 
erythrocyte aggregation occurs because of 
a lower localised protein or polymer near 
the erythrocyte surface compared to the 
suspending medium (Bäumler et al, 1996). 
In both models, disaggregation forces 
are, respectively, electrostatic repulsion, 
membrane force and mechanical shearing. To 
distinguish between the effects of suspending 
media properties (e.g. protein type and 
concentration) from those intrinsic to the 
red blood cell, the term ‘aggregability’ was 
suggested to indicate the intrinsic tendency 
of erythrocyte to undergo aggregation while 
the aggregation refers to the rate, extent 
or strength of erythrocyte aggregation in 
any medium. 

Albumin affects 36% of the difference 
between water and plasma viscosity (both 
Newtonian fluids), while its participation to 
the total plasmatic proteins is 60%. Fibrinogen 
corresponds to only about 4% of the total 
plasma proteins, while its participation to 
plasma viscosity is about 22%. The different 
addition given by several protein fractions 
to the plasma viscosity may be explained 
by their molecular size and shape. In fact, 
the fibrinogen is more asymmetric in 
comparison with other proteins, as well as the 
immunoglobulins and the globulins contribute 
to plasma viscosity to a greater degree than 
albumin with reference to higher molecular 
weight (Baskurt, 2007).

Erythrocyte deformability that is dependent 
on surface/volume ratio, cytosolic viscosity 
and membrane dynamic properties of RBCs. 
The human RBC during its 120-day lifespan 
in the circulation undergoes continuous 
passive shape changes. In arteries, it responds 
to shear stress becoming an ellipsoid; in 
the microcirculation, it has to go through 
capillaries, which have a transversal diameter 
that is a third of its own. The RBC has 
exclusive mechanical properties that make 
it elastic, able to respond to applied stresses 
and to undergo wide and reversible linear 
deformation maintaining constant the area 
of its membrane surface. An increase of 4% is 
enough to cause the cellular lysis. This aspect 
depends on its peculiar structure: its elasticity 
is the predisposition to maintain its own shape, 
which depends on the protein composition, 
while its viscosity is determined by the 
properties of the lipid structure.

Leukocyte deformability that depends 
on cytoskeleton and intracellular fluid; the 

cytoskeleton is composed of three main 
classes of proteins: actin, microtubules 
and intermediate filaments. These proteins 
are involved in the way a cell responds to 
deformation. It must be underlined that the 
actin cytoskeleton is not a constant structure 
and bears sudden rearrangement are pressed 
for by chemotactic stimuli. These stimuli, 
in vivo and in vitro, require a constant  and 
directed cycling between monomeric globular 
(G-) actin and polymerised filamentous (F-) 
actin. In polimorphonuclear (PMN) cells, after 
stimulation there is an early increase in cortical 
F-actin and this latter causes significant 
changes in resistance to deformation (Tran-
Son-Tay and Nash, 2007). The intracellular fluid 
is a water solution of enzymes and organic 
molecules and cellular organelles plus the 
nucleus. The role of the nucleus in leukocyte 
deformation has been previously described 
(Tran-Son-Tsay et al, 1994; Tseng et al, 2004).

Primary hyperviscosity disorders
Primary hyperviscosity may be subdivided 
into polycythemic, plasma and sclerocythemic 
(Lowe et al, 1981; Di Perri et al, 1983; Chien 
and Lang, 1987). The clinical conditions that 
may be part of polycythemic hyperviscosity 
are those caused by the bone marrow 
proliferative states, such as polycythemia, 
thrombocytemia and leukemia. Those that 
may be responsible for plasma hyperviscosity 
are plasma cell disorders (multiple myeloma, 
Waldenstrom macroglobulinemia, monoclonal 
gammopathy of undetermined significance-
MGUS), cryoglobulinemia, cryofibrinogenemia, 
dysfibrinogenemia and the connective tissue 
diseases (systemic sclerosis, rheumatoid 
arthritis, systemic lupus erythematosus, 
Sjogren’s syndrome). The clinical conditions 
that may be part of sclerocythemic 
hyperviscosity are  hereditary spherocytosis, 
thalassemia and sickle cell disease.

Secondary hyperviscosity disorders
DM, arterial hypertension, critical limb 
ischaemia and chronic venous insufficiency 
are among the diseases that may cause a 
secondary hyperviscosity disorder associated 
to the presence of leg ulcers.

Diabetes mellitus
The authors’ previous studies (Caimi et al, 1993a; 
Hopps et al, 2008; Caimi, 2013) related to this 
metabolic disease have discovered the presence 
of an alteration of the haemorheological profile. 
Increased whole-blood, plasma and serum 
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viscosity, increased RBC aggregation, and 
decreased RBC deformability. In addition, 
investigation using the spectroscopic 
fluorescence and employing fluorescent 
probes has found evident alterations of the 
erythrocytes and the polymorphonuclear PMN 
membrane rheology (Caimi et al, 1993a; Hopps 
et al, 2008; Caimi, 2013). The PMN rheology 
alteration seems to be related to the reduced 
activity of phosphofructokinase, to the increase 
in the hexose monophosphate shunt and to 
the activation of the poliol pathway, which 
characterises the PMN metabolism of people 
with diabetes.

Previously, many authors have examined the 
behaviour of the haemorheological profile in 
diabetic foot (Karandikar et al, 1994), in diabetic 
patients with lower-limb arterial ischaemia (Le 
Devehat et al, 2001) and in people with diabetes 
of both types with foot gangrene (Mantskava 
et al, 2006). Some authors believe also that 
the haemorheological alteration might be a 
marker of diabetic foot syndrome deterioration 
(Khodabandehlou et al, 2004b).  

The clinical course and the treatment of 
diabetic foot syndrome (ischaemia, ulcers, 
gangrene), obtained with fibrinogen adsorption 
(Koll et al, 2002; Klingel et al, 2003) or with 
heparin-induced extracorporal LDL precipitation 
(HELP), improves the prognosis of the diabetic 
ulcers (Richter et al, 2001; Rietzsch et al, 
2008; Weiss, 2012). Diabetic foot syndrome 
is a complication of long-standing DM; the 
combination of macro and microvascular 
disease associated with neuropathy leads to the 
development of leg ulcers. 

A microvascular disease worsens with the 
increase in plasma viscosity and the decrease in 
erythrocyte deformability, as observed in DM; 
the plasma viscosity increase may be explained 
by the presence of hyperfibrinogenemia. 

With DM, the factors influencing RBC 
deformability are a decreased surface/volume 
ratio (Jin et al, 2010) related to the sorbitol 
cytosolic accumulation and to the membrane 
lipid alterations, increased cytosolic viscosity 
related to the reduction in the organic 
phosphates, increased calcium and glycated 
haemoglobin, and alteration of the membrane 
dynamic properties related to the qualitative 
and/or quantitative membrane alterations of 
lipids and proteins.

In the erythrocyte membrane of diabetic 
subjects  an increase in total cholesterol (Nayak 
et al, 2008), a decrease in phospholpids (Nayak 
et al, 2008), an increase in total saturated fatty 
acids (TS), a decrease in unsaturated fatty 

acids (TU) and then an increase in TS/TU ratio 
(Bakan et al, 2006) have been found. The red 
cell membrane of diabetic subjects shows an 
increase in protein glycation (Bryszewska and 
Szosland, 1988), an increase in band 8 and in 
membrane-bound haemoglobin, such as the 
presence of aberrant sialoglycoproteins bands 
(Petropoulos et al, 2007) and a decrease of 
ankirin concentration (Adak et al, 2008).

Recently, some authors (Rivelli et al, 2012; 
Nigra et al, 2016) have underlined how in 
diabetic subjects the reduction in erythrocyte 
deformability may be explained by the 
acetylation and translocation of the membrane 
tubulin (Mem-Tub). Tubulin is an erythrocyte 
protein that plays a significant structural role 
and that regulates the functional activity of Na+/
K+- ATPase (Amaiden et al, 2012) and Ca2+-
ATPase (Monesterolo et al, 2015).  

DM is often associated with a 
thrombocytopathy related to the increased 
platelet adhesiveness and aggregability. These 
laboratory findings are present in DM before the 
development of vascular lesions and depend on 
poor metabolic control. The increase in platelet 
aggregation found in people with diabetes 
worsens the microcirculatory blood flow and 
slows down the healing of leg ulcers.  All these 
haemorheological and coagulative alterations 
observed in DM are determining factors of the 
microcirculatory disorders. 

Moreover, it must be underlined that the 
increase in glycated haemoglobin, besides 
reducing the erythrocyte deformability, 
shifts the haemoglobin dissociation curve 
and diminishes the values of P50; the latter 
acts negatively on the oxygen transport and 
contributes to the worsening of the leg ulcers.

Arterial hypertension
Arterial hypertension may be associated 
with skin ulcers (Martorell’s ulcers), that are 
frequently symmetric and located in the distal 
third and anterolateral surface of the lower 
limbs (Graves et al, 2001; Vuerstaek et al, 2010; 
Franklin and Dissemond, 2011; Alavi et al, 2012; 
Lima Pinto et al, 2015; Hafner, 2016). Martorell’s 
ulcers are noticeable for their painful red blisters, 
which soon become blue, purpuric and finally 
ulcerate. These ulcers may be preceded by 
pigmented pretibial patches. Pain, relented 
healing and poor clinical response to standard 
therapy are a specific sign of Martorell’s ulcers. 
The study of microcirculation shows an increase 
in resistance of the arterioles associated to 
a limited compensatory mechanism. Other 
causal factors in the genesis of these ulcers 
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may be the alterations in the sympathetic 
innervation, a persistent arteriolar hypertonia 
and an abnormal arteriolar vascular response to 
vasoactive substances. 

The impaired haemorheological profile in 
arterial hypertension observed  by our group  
regards respectively RBCs and circulating PMNs, 
the latter examined at baseline and after in 
vitro activation with PMA and fMLP (Caimi et 
al, 1993b, 1997, 2000a; Hopps et al, 2009; Lo 
Presti et al, 2014), and in the past few years by 
other authors (Sloop et al, 2015; Radiosinska et 
al, 2016), may have a role in the clinical course 
of these ulcers. The same hemorheological 
alteration may contribute to the organic 
complications of arterial hypertension, such as 
left ventricular hypertrophy and hypertensive 
retinopathy. Another interesting point regards 
that the abnormalities in hemorheological 
profile seem more significant in the high-renin 
than in low-renin hypertensive subjects. 

In arterial hypertension, the impairment 
of tissue oxygenation that accompanies this 
clinical condition, may have a role in the 
pathogenesis of leg ulcers (Cicco and Pirrelli, 
1999). The impaired tissue oxygenation may 
depend on the reduction of the erythrocyte 
deformability found in this clinical condition 
(Odashiro et al, 2015; Fu et al, 2016). The 
alteration of this erythrocyte deformability is 
related to the RBC membrane abnormalities 
(Pytel et al, 2012; Rodrigo et al, 2014) observed 
in arterial hypertension even if other authors, 
recently, retain this alteration referable to the 
increase of the detyrosinated tubulin observed 
in the erythrocyte membrane (Amaiden 
et al, 2014).

Critical limb ischaemia
Some authors (Koenig et al, 1988) describe a 
positive association between peripheral arterial 
disease (PAD) and increased plasma viscosity. 
Ricci et al (2013)  found a relationship between 
plasma viscosity and the increased risk of 
PAD, while Poredos and Zizek (1996) noted a 
relationship between the increase in plasma 
viscosity and the progression of PAD.  Other 
authors (Woodburn et al, 1995) observed a 
correlation between the fibrinogen level and 
the presence of symptomatic PAD. In non-
diabetic subjects suffering from PAD, whole-
blood and plasma viscosity, such as RBC rigidity 
and aggregation, were significantly higher 
than in controls (Dupuy-Fons et al, 1995). 
The same parameters have been evaluated 
in diabetic subjects with PAD, resulting in 
significant increases in those who needed 

major amputation (Dupuy-Fons et al, 1996). 
Smith et al (1998) noted that the increase in 
fibrinogen, plasma and whole-blood viscosity 
in PAD patients resulted in risk factors for a later 
vascular intervention during a 6-year follow-
up. Others (Vigilance and Reid, 2008) have 
suggested that increased plasma fibrinogen 
and plasma viscosity might impair the 
vasodilatation that occurs as a compensatory 
mechanism in case of hyperviscosity, resulting 
in a decreased peripheral blood flow. 

Some authors studying PAD subjects 
have described a decrease in whole-blood 
filterability even if the washed RBCs of 
these patients did not differ from normal 
controls. However, in patients with chronic 
atheromatous ischaemia of the legs, a 
reduction of the red cell deformability, explored 
by using the elongation index, has been 
demonstrated by others (Drodz et al, 2001). 

In the authors’ haemorheological laboratory, 
in patients with vascular atherosclerotic 
disease, an impairment of the rheological 
parameters of the PMNs has been described 
(Caimi et al 1996, 1997). The role of the 
rheological properties of resting and activated 
leukocytes in the pathophysiology of the 
microcirculation is well known. Several papers 
underline that the flow and the rheological 
properties of circulating PMNs are altered 
in patients with intermittent claudication 
(Neumann et al, 1990), in those with critical 
limb ischaemia (Nash et al, 1988) and patients 
with acute myocardial infarction (Nash et al, 
1989; Caimi et al, 2004), as well as in patients 
with acute ischaemic stroke (Ciuffetti et al, 
1989; Caimi et al, 2000b).      

In subjects with non-diabetic and non-
hypertensive critical limb ischaemia, the 
haemorheological alteration seemed to 
play a pivotal role. However, after arterial 
reconstruction, no improvement in the 
haemorheological profile has been observed 
by some authors (Holmberg et al, 2000). The 
importance of the hemorheological profile 
in critical leg ischaemia is determined by 
the negative effects that blood viscosity and 
fibrinogen levels have on the intermittent 
claudication, as well as the negative prognostic 
significance of haemoglobin levels and of 
fibrinogen in the healing process of amputated 
limbs due to critical leg ischaemia. In the latter, 
there is a break between the microvascular flow 
and the microvascular defence systems. 

A more rapid and evident haemorheological 
effect may be obtained by the employment of 
normovolemic hemodilution, pharmacological 
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activation with PMA and fMLP (Hopps et al, 
2014). The same finding has been found by 
the authors in patients with deep venous 
thrombosis (DVT) and in patients with post-
phlebitic syndrome (Caimi et al, 1999). In 
patients with venous ulcers, an abnormal 
response of the PMN beta2-integrins (CD11b, 
CD11c, CD18), in particular after in vitro 
activation (Lo Presti et al, 2006), as well as in 
a group of patients with DVT, has also been 
noted (Caimi et al, 2005). The leukocyte-
endothelium interactions, mediated by 
adhesion molecules, may play a key role in 
the pathogenesis of chronic venous ulcers. 
The evolution of chronic venous insufficiency 
in leg ulcers may be explained by the marked 
microcirculatory disorder and the functional 
alterations observed in polymorphonuclear 
cells (Smith, 2006; McDaniel et al, 2013).

To date, several approaches for the 
treatment of the venous leg ulcers are 
employed: electric and electromagnetic 
stimulation, compression, hyperbaric oxygen, 
drugs and surgical therapy. Previously, the 
fibrinogen adsorption was also suggested 
(Stucker et al, 2003).

Conclusions
Several clinical conditions responsible for 
the secondary hyperviscosity disorder may 
be associated with leg ulcers. However, 
a clear impact of the hemorheological 
alteration on these ulcers cannot be directly 
demonstrated. An acceleration of the healing 
process of leg ulcers, however, has been 
obtained through pharmacological treatment, 
plasma exchange or fibrinogen adsorption 
(rheosorb), which significantly improves the 
hemorheological profile. � Wint
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